AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Meningeal Neoplasms

Showing 1 to 10 of 66 articles

Clear Filters

Stiffness analysis of meningiomas using neural network-based inversion on MR Elastography.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Meningiomas are the most prevalent benign intracranial tumors, and surgical intervention is the primary treatment. The physical characteristics of meningiomas, such as tumor stiffness or consistency, play a crucial role in the surgical approach. This...

Machine learning based radiomics approach for outcome prediction of meningioma - a systematic review.

F1000Research
INTRODUCTION: Meningioma is the most common brain tumor in adults. Magnetic resonance imaging (MRI) is the preferred imaging modality for assessing tumor outcomes. Radiomics, an advanced imaging technique, assesses tumor heterogeneity and identifies ...

MRI-Based Meningioma Firmness Classification Using an Adversarial Feature Learning Approach.

Sensors (Basel, Switzerland)
The firmness of meningiomas is a critical factor that impacts the surgical approach recommended for patients. The conventional approaches that couple image processing techniques with radiologists' visual assessments of magnetic resonance imaging (MRI...

Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: Exploring the construction of a fusion model that combines radiomics and deep learning (DL) features is of great significance for the precise preoperative diagnosis of meningioma sinus invasion.

Development of Hybrid radiomic Machine learning models for preoperative prediction of meningioma grade on multiparametric MRI.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
PURPOSE: To develop and compare machine learning models for distinguishing low and high grade meningiomas on multiparametric MRI.

Deep learning for automated segmentation of brain edema in meningioma after radiosurgery.

BMC medical imaging
BACKGROUND: Although gamma Knife radiosurgery (GKRS) is commonly used to treat benign brain tumors, such as meningioma, irradiating the surrounding brain tissue can lead to perifocal edema within a few months after the procedure. Volumetric assessmen...

Machine Learning Analysis of Single-Voxel Proton MR Spectroscopy for Differentiating Solitary Fibrous Tumors and Meningiomas.

NMR in biomedicine
Solitary fibrous tumor (SFT), formerly known as hemangiopericytoma, is an uncommon brain tumor often confused with meningioma on MRI. Unlike meningiomas, SFTs exhibit a myoinositol peak on magnetic resonance spectroscopy (MRS). This study aimed to de...

An MRI-based deep transfer learning radiomics nomogram for predicting meningioma grade.

Scientific reports
The aim of this study was to establish a nomogram based on clinical, radiomics, and deep transfer learning (DTL) features to predict meningioma grade. Three hundred forty meningiomas from one hospital composed the training set, and 102 meningiomas fr...