AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neoplasms

Showing 101 to 110 of 1994 articles

Clear Filters

Realizing the promise of machine learning in precision oncology: expert perspectives on opportunities and challenges.

BMC cancer
BACKGROUND: The ability of machine learning (ML) to process and learn from large quantities of heterogeneous patient data is gaining attention in the precision oncology community. Some remarkable developments have taken place in the domain of image c...

Mixed-Supervised Learning for Cell Classification.

Sensors (Basel, Switzerland)
Cell classification based on histopathology images is crucial for tumor recognition and cancer diagnosis. Using deep learning, classification accuracy is hugely improved. Semi-supervised learning is an advanced deep learning approach that uses both l...

Predicting cancer survival at different stages: Insights from fair and explainable machine learning approaches.

International journal of medical informatics
OBJECTIVES: While prior machine learning (ML) models for cancer survivability prediction often treated all cancer stages uniformly, cancer survivability prediction should involve understanding how different stages impact the outcomes. Additionally, t...

A machine learning-based investigation of integrin expression patterns in cancer and metastasis.

Scientific reports
Integrins, a family of transmembrane receptor proteins, are well known to play important roles in cancer development and metastasis. However, a comprehensive understanding of these roles has not been achieved due to the complex relationships between ...

A multi-classification deep neural network for cancer type identification from high-dimension, small-sample and imbalanced gene microarray data.

Scientific reports
Gene microarray technology provides an efficient way to diagnose cancer. However, microarray gene expression data face the challenges of high-dimension, small-sample, and multi-class imbalance. The coupling of these challenges leads to inaccurate res...

Artificial intelligence in digital pathology - time for a reality check.

Nature reviews. Clinical oncology
The past decade has seen the introduction of artificial intelligence (AI)-based approaches aimed at optimizing several workflows across many medical specialties. In clinical oncology, the most promising applications include those involving image anal...

A hybrid machine learning framework for functional annotation of mitochondrial glutathione transport and metabolism proteins in cancers.

BMC bioinformatics
BACKGROUND: Alterations of metabolism, including changes in mitochondrial metabolism as well as glutathione (GSH) metabolism are a well appreciated hallmark of many cancers. Mitochondrial GSH (mGSH) transport is a poorly characterized aspect of GSH m...

ContraSurv: Enhancing Prognostic Assessment of Medical Images via Data-Efficient Weakly Supervised Contrastive Learning.

IEEE journal of biomedical and health informatics
Prognostic assessment remains a critical challenge in medical research, often limited by the lack of well-labeled data. In this work, we introduce ContraSurv, a weakly-supervised learning framework based on contrastive learning, designed to enhance p...

Interpretable Dynamic Directed Graph Convolutional Network for Multi-Relational Prediction of Missense Mutation and Drug Response.

IEEE journal of biomedical and health informatics
Tumor heterogeneity presents a significant challenge in predicting drug responses, especially as missense mutations within the same gene can lead to varied outcomes such as drug resistance, enhanced sensitivity, or therapeutic ineffectiveness. These ...

Predicting Clinical Anticancer Drug Response of Patients by Using Domain Alignment and Prototypical Learning.

IEEE journal of biomedical and health informatics
Anticancer drug response prediction is crucial in developing personalized treatment plans for cancer patients. However, High-quality patient anticancer drug response data are scarce and cell line data and patient data have different distributions, mo...