Early recognition of ventricular fibrillation (VF) and electrical therapy are key for the survival of out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrillators (AED). AED algorithms for VF-detection are customarily...
OBJECTIVE: Quantitative ventricular fibrillation (VF) waveform analysis is a potentially powerful tool to optimize defibrillation. However, whether combining VF features with additional attributes that related to the previous shock could enhance the ...
PURPOSE: This paper reports on a generic framework to provide clinicians with the ability to conduct complex analyses on elaborate research topics using cascaded queries to resolve internal time-event dependencies in the research questions, as an ext...
BACKGROUND: Emergency medical dispatchers fail to identify approximately 25% of cases of out of hospital cardiac arrest, thus lose the opportunity to provide the caller instructions in cardiopulmonary resuscitation. We examined whether a machine lear...
BACKGROUND: Out-of-hospital cardiac arrest (OHCA) affects nearly 400,000 people each year in the United States of which only 10% survive. Using data from the Cardiac Arrest Registry to Enhance Survival (CARES), and machine learning (ML) techniques, w...
AIM: Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-h...