AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Electric Countershock

Showing 1 to 8 of 8 articles

Clear Filters

Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia.

PloS one
Early defibrillation by an automated external defibrillator (AED) is key for the survival of out-of-hospital cardiac arrest (OHCA) patients. ECG feature extraction and machine learning have been successfully used to detect ventricular fibrillation (V...

Predicting electrical storms by remote monitoring of implantable cardioverter-defibrillator patients using machine learning.

Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
AIMS: Electrical storm (ES) is a serious arrhythmic syndrome that is characterized by recurrent episodes of ventricular arrhythmias. Electrical storm is associated with increased mortality and morbidity despite the use of implantable cardioverter-def...

Role for machine learning in sex-specific prediction of successful electrical cardioversion in atrial fibrillation?

Open heart
OBJECTIVE: Electrical cardioversion is frequently performed to restore sinus rhythm in patients with persistent atrial fibrillation (AF). However, AF recurs in many patients and identifying the patients who benefit from electrical cardioversion is di...

Artificial intelligence for predicting shockable rhythm during cardiopulmonary resuscitation: In-hospital setting.

Resuscitation
AIM OF THE STUDY: This study aimed to develop an artificial intelligence (AI) model capable of predicting shockable rhythms from electrocardiograms (ECGs) with compression artifacts using real-world data from emergency department (ED) settings. Addit...

Predictors of left atrial appendage thrombus in atrial fibrillation patients undergoing cardioversion.

Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing
BACKGROUND: Atrial fibrillation and atrial flutter represent the most prevalent clinically significant cardiac arrhythmias. While the CHA2DS2-VASc score is commonly used to inform anticoagulation therapy decisions for patients with these conditions, ...

External validation of a machine learning-based classification algorithm for ambulatory heart rhythm diagnostics in pericardioversion atrial fibrillation patients using smartphone photoplethysmography: the SMARTBEATS-ALGO study.

Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
AIMS: The aim of this study was to perform an external validation of an automatic machine learning (ML) algorithm for heart rhythm diagnostics using smartphone photoplethysmography (PPG) recorded by patients with atrial fibrillation (AF) and atrial f...