AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Pain

Showing 11 to 20 of 198 articles

Clear Filters

Uncertainty quantification in neural-network based pain intensity estimation.

PloS one
Improper pain management leads to severe physical or mental consequences, including suffering, a negative impact on quality of life, and an increased risk of opioid dependency. Assessing the presence and severity of pain is imperative to prevent such...

Analyzing pain patterns in the emergency department: Leveraging clinical text deep learning models for real-world insights.

International journal of medical informatics
OBJECTIVE: To determine the incidence of patients presenting in pain to a large Australian inner-city emergency department (ED) using a clinical text deep learning algorithm.

Pain Assessment for Patients with Dementia and Communication Impairment: Feasibility Study of the Usage of Artificial Intelligence-Enabled Wearables.

Sensors (Basel, Switzerland)
BACKGROUND: Recent studies on machine learning have shown the potential to provide new methods with which to assess pain through the measurement of signals associated with physiologic responses to pain detected by wearables. We conducted a prospectiv...

Muscle Fat and Volume Differences in People With Hip-Related Pain Compared With Controls: A Machine Learning Approach.

Journal of cachexia, sarcopenia and muscle
BACKGROUND: Hip-related pain (HRP) affects young to middle-aged active adults and impacts physical activity, finances and quality of life. HRP includes conditions like femoroacetabular impingement syndrome and labral tears. Lateral hip muscle dysfunc...

A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain.

Cell reports methods
Artificial intelligence (AI) and deep learning technologies hold promise for identifying effective drugs for human diseases, including pain. Here, we present an interpretable deep-learning-based ligand image- and receptor's three-dimensional (3D)-str...

An Experimental and Clinical Physiological Signal Dataset for Automated Pain Recognition.

Scientific data
Access to large amounts of data is essential for successful machine learning research. However, there is insufficient data for many applications, as data collection is often challenging and time-consuming. The same applies to automated pain recogniti...

Automated video-based pain recognition in cats using facial landmarks.

Scientific reports
Affective states are reflected in the facial expressions of all mammals. Facial behaviors linked to pain have attracted most of the attention so far in non-human animals, leading to the development of numerous instruments for evaluating pain through ...

Diagnosis of Pain Deception Using Minnesota Multiphasic Personality Inventory-2 Based on XGBoost Machine Learning Algorithm: A Single-Blinded Randomized Controlled Trial.

Medicina (Kaunas, Lithuania)
: Assessing pain deception is challenging due to its subjective nature. The main goal of this study was to evaluate the diagnostic value of pain deception using machine learning (ML) analysis with the Minnesota Multiphasic Personality Inventory-2 (MM...

Decoding of pain during heel lancing in human neonates with EEG signal and machine learning approach.

Scientific reports
Currently, pain assessment using electroencephalogram signals and machine learning methods in clinical studies is of great importance, especially for those who cannot express their pain. Since newborns are among the high-risk group and always experie...

Developing and Validating a Multimodal Dataset for Neonatal Pain Assessment to Improve AI Algorithms With Clinical Data.

Advances in neonatal care : official journal of the National Association of Neonatal Nurses
BACKGROUND: Using Artificial Intelligence (AI) for neonatal pain assessment has great potential, but its effectiveness depends on accurate data labeling. Therefore, precise and reliable neonatal pain datasets are essential for managing neonatal pain.