AIMC Topic: Protein Conformation

Clear Filters Showing 321 to 330 of 560 articles

Deep learning enables rapid identification of potent DDR1 kinase inhibitors.

Nature biotechnology
We have developed a deep generative model, generative tensorial reinforcement learning (GENTRL), for de novo small-molecule design. GENTRL optimizes synthetic feasibility, novelty, and biological activity. We used GENTRL to discover potent inhibitors...

Getting to Know Your Neighbor: Protein Structure Prediction Comes of Age with Contextual Machine Learning.

Journal of computational biology : a journal of computational molecular cell biology
The folding of a protein structure is a process governed by both local and nonlocal interactions. While incorporating local dependencies into a machine learning algorithm for protein structure prediction is simple and has been exploited for some time...

Boosting phosphorylation site prediction with sequence feature-based machine learning.

Proteins
Protein phosphorylation is one of the essential posttranslation modifications playing a vital role in the regulation of many fundamental cellular processes. We propose a LightGBM-based computational approach that uses evolutionary, geometric, sequenc...

Sequence assignment for low-resolution modelling of protein crystal structures.

Acta crystallographica. Section D, Structural biology
The performance of automated model building in crystal structure determination usually decreases with the resolution of the experimental data, and may result in fragmented models and incorrect side-chain assignment. Presented here are new methods for...

Enabling full-length evolutionary profiles based deep convolutional neural network for predicting DNA-binding proteins from sequence.

Proteins
Sequence based DNA-binding protein (DBP) prediction is a widely studied biological problem. Sliding windows on position specific substitution matrices (PSSMs) rows predict DNA-binding residues well on known DBPs but the same models cannot be applied ...

A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence.

ACS nano
We report a self-consistent method to translate amino acid sequences into audible sound, use the representation in the musical space to train a neural network, and then apply it to generate protein designs using artificial intelligence (AI). The soni...

Coupling dynamics and evolutionary information with structure to identify protein regulatory and functional binding sites.

Proteins
Binding sites in proteins can be either specifically functional binding sites (active sites) that bind specific substrates with high affinity or regulatory binding sites (allosteric sites), that modulate the activity of functional binding sites throu...

Prediction of Sub-Monomer A2 Domain Dynamics of the von Willebrand Factor by Machine Learning Algorithm and Coarse-Grained Molecular Dynamics Simulation.

Scientific reports
We develop a machine learning tool useful for predicting the instantaneous dynamical state of sub-monomer features within long linear polymer chains, as well as extracting the dominant macromolecular motions associated with sub-monomer behaviors of i...

Analysis of the Deleterious Single Nucleotide Polymorphisms Impact on Estrogen Receptor Alpha-p53 Interaction: A Machine Learning Approach.

International journal of molecular sciences
Breast cancer is a leading cancer type and one of the major health issues faced by women around the world. Some of its major risk factors include body mass index, hormone replacement therapy, family history and germline mutations. Of these risk facto...

Discrimination power of knowledge-based potential dictated by the dominant energies in native protein structures.

Amino acids
Extracting a well-designed energy function is important for protein structure evaluation. Knowledge-based potential functions are one type of the energy functions which can be obtained from known protein structures. The pairwise potential between ato...