AIMC Topic: Protein Interaction Mapping

Clear Filters Showing 61 to 70 of 239 articles

Residue-Frustration-Based Prediction of Protein-Protein Interactions Using Machine Learning.

The journal of physical chemistry. B
The study of protein-protein interactions (PPIs) is important in understanding the function of proteins. However, it is still a challenge to investigate the transient protein-protein interaction by experiments. Hence, the computational prediction for...

Deep Neural Network and Extreme Gradient Boosting Based Hybrid Classifier for Improved Prediction of Protein-Protein Interaction.

IEEE/ACM transactions on computational biology and bioinformatics
Understanding the behavioral process of life and disease-causing mechanism, knowledge regarding protein-protein interactions (PPI) is essential. In this paper, a novel hybrid approach combining deep neural network (DNN) and extreme gradient boosting ...

Harnessing protein folding neural networks for peptide-protein docking.

Nature communications
Highly accurate protein structure predictions by deep neural networks such as AlphaFold2 and RoseTTAFold have tremendous impact on structural biology and beyond. Here, we show that, although these deep learning approaches have originally been develop...

Super.Complex: A supervised machine learning pipeline for molecular complex detection in protein-interaction networks.

PloS one
Characterization of protein complexes, i.e. sets of proteins assembling into a single larger physical entity, is important, as such assemblies play many essential roles in cells such as gene regulation. From networks of protein-protein interactions, ...

Computed structures of core eukaryotic protein complexes.

Science (New York, N.Y.)
Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coe...

DeepRank: a deep learning framework for data mining 3D protein-protein interfaces.

Nature communications
Three-dimensional (3D) structures of protein complexes provide fundamental information to decipher biological processes at the molecular scale. The vast amount of experimentally and computationally resolved protein-protein interfaces (PPIs) offers th...

pdCSM-PPI: Using Graph-Based Signatures to Identify Protein-Protein Interaction Inhibitors.

Journal of chemical information and modeling
Protein-protein interactions are promising sites for development of selective drugs; however, they have generally been viewed as challenging targets. Molecules targeting protein-protein interactions tend to be larger and more lipophilic than other dr...

WinBinVec: Cancer-Associated Protein-Protein Interaction Extraction and Identification of 20 Various Cancer Types and Metastasis Using Different Deep Learning Models.

IEEE journal of biomedical and health informatics
Biophysical protein-protein interactions perform dominant roles in the initiation and progression of many cancer-related pathways. A protein-protein interaction might play different roles in diverse cancer types. Hence, prioritizing the PPIs in each ...

Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review.

Molecular diversity
Artificial intelligence (AI) renders cutting-edge applications in diverse sectors of society. Due to substantial progress in high-performance computing, the development of superior algorithms, and the accumulation of huge biological and chemical data...