Automatic segmentation of infected lesions from computed tomography (CT) of COVID-19 patients is crucial for accurate diagnosis and follow-up assessment. The remaining challenges are the obvious scale difference between different types of COVID-19 le...
For image-guided small animal irradiations, the whole workflow of imaging, organ contouring, irradiation planning, and delivery is typically performed in a single session requiring continuous administration of anaesthetic agents. Automating contourin...
Background Accurate detection of pneumothorax on chest radiographs, the most common complication of percutaneous transthoracic needle biopsies (PTNBs), is not always easy in practice. A computer-aided detection (CAD) system may help detect pneumothor...
The COVID-19 epidemic has a catastrophic impact on global well-being and public health. More than 27 million confirmed cases have been reported worldwide until now. Due to the growing number of confirmed cases, and challenges to the variations of the...
The coronavirus pandemic (COVID-19) is disrupting the entire world; its rapid global spread threatens to affect millions of people. Accurate and timely diagnosis of COVID-19 is essential to control the spread and alleviate risk. Due to the promising ...
We developed and validated a deep learning (DL)-based model using the segmentation method and assessed its ability to detect lung cancer on chest radiographs. Chest radiographs for use as a training dataset and a test dataset were collected separatel...
Computer methods and programs in biomedicine
Jan 10, 2022
BACKGROUND AND OBJECTIVE: Bone suppression images (BSIs) of chest radiographs (CXRs) have been proven to improve diagnosis of pulmonary diseases. To acquire BSIs, dual-energy subtraction (DES) or a deep-learning-based model trained with DES-based BSI...
The automated generation of radiology reports provides X-rays and has tremendous potential to enhance the clinical diagnosis of diseases in patients. A new research direction is gaining increasing attention that involves the use of hybrid approaches ...
Coronavirus Disease 2019 (COVID-19) is extremely infectious and rapidly spreading around the globe. As a result, rapid and precise identification of COVID-19 patients is critical. Deep Learning has shown promising performance in a variety of domains ...
OBJECTIVES: We aim ed to evaluate a commercial artificial intelligence (AI) solution on a multicenter cohort of chest radiographs and to compare physicians' ability to detect and localize referable thoracic abnormalities with and without AI assistanc...