AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiotherapy Dosage

Showing 241 to 250 of 463 articles

Clear Filters

Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: In radiotherapy, MRI is used for target volume and organs-at-risk delineation for its superior soft-tissue contrast as compared to CT imaging. However, MRI does not provide the electron density of tissue necessary for dose calculation. Sever...

Deep learning method for prediction of patient-specific dose distribution in breast cancer.

Radiation oncology (London, England)
BACKGROUND: Patient-specific dose prediction improves the efficiency and quality of radiation treatment planning and reduces the time required to find the optimal plan. In this study, a patient-specific dose prediction model was developed for a left-...

Managing tumor changes during radiotherapy using a deep learning model.

Medical physics
PURPOSE: We propose a treatment planning framework that accounts for weekly lung tumor shrinkage using cone beam computed tomography (CBCT) images with a deep learning-based model.

Personalized brachytherapy dose reconstruction using deep learning.

Computers in biology and medicine
BACKGROUND AND PURPOSE: Accurate calculation of the absorbed dose delivered to the tumor and normal tissues improves treatment gain factor, which is the major advantage of brachytherapy over external radiation therapy. To address the simplifications ...

Applications of machine and deep learning to patient-specific IMRT/VMAT quality assurance.

Journal of applied clinical medical physics
In order to deliver accurate and safe treatment to cancer patients in radiation therapy using advanced techniques such as intensity modulated radiation therapy (IMRT) and volumetric-arc radiation therapy (VMAT), patient specific quality assurance (QA...

Development of in-house fully residual deep convolutional neural network-based segmentation software for the male pelvic CT.

Radiation oncology (London, England)
BACKGROUND: This study aimed to (1) develop a fully residual deep convolutional neural network (CNN)-based segmentation software for computed tomography image segmentation of the male pelvic region and (2) demonstrate its efficiency in the male pelvi...

A feasibility study on deep learning-based individualized 3D dose distribution prediction.

Medical physics
PURPOSE: Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An approximately optimal dose distribution corresponding to a specific patient's anatomy can be predicted by using pre-trained deep learning (DL) models...

DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software.

Radiation oncology (London, England)
BACKGROUND: Any Monte Carlo simulation of dose delivery using medical accelerator-generated megavolt photon beams begins by simulating electrons of the primary electron beam interacting with a target. Because the electron beam characteristics of any ...

Interobserver variability in organ at risk delineation in head and neck cancer.

Radiation oncology (London, England)
BACKGROUND: In radiotherapy inaccuracy in organ at risk (OAR) delineation can impact treatment plan optimisation and treatment plan evaluation. Brouwer et al. showed significant interobserver variability (IOV) in OAR delineation in head and neck canc...