AIMC Topic: RNA, Messenger

Clear Filters Showing 31 to 40 of 234 articles

Delineating yeast cleavage and polyadenylation signals using deep learning.

Genome research
3'-end cleavage and polyadenylation is an essential process for eukaryotic mRNA maturation. In yeast species, the polyadenylation signals that recruit the processing machinery are degenerate and remain poorly characterized compared with the well-defi...

Deciphering 3'UTR Mediated Gene Regulation Using Interpretable Deep Representation Learning.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
The 3' untranslated regions (3'UTRs) of messenger RNAs contain many important cis-regulatory elements that are under functional and evolutionary constraints. It is hypothesized that these constraints are similar to grammars and syntaxes in human lang...

AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery.

Nature communications
Ionizable lipid nanoparticles (LNPs) are seeing widespread use in mRNA delivery, notably in SARS-CoV-2 mRNA vaccines. However, the expansion of mRNA therapies beyond COVID-19 is impeded by the absence of LNPs tailored for diverse cell types. In this ...

A personalized mRNA signature for predicting hypertrophic cardiomyopathy applying machine learning methods.

Scientific reports
Hypertrophic cardiomyopathy (HCM) may lead to cardiac dysfunction and sudden death. This study was designed to develop a HCM signature applying bioinformatics and machine learning methods. Data of HCM and normal tissues were obtained from public data...

Optimizing 5'UTRs for mRNA-delivered gene editing using deep learning.

Nature communications
mRNA therapeutics are revolutionizing the pharmaceutical industry, but methods to optimize the primary sequence for increased expression are still lacking. Here, we design 5'UTRs for efficient mRNA translation using deep learning. We perform polysome...

Context-Aware Poly(A) Signal Prediction Model via Deep Spatial-Temporal Neural Networks.

IEEE transactions on neural networks and learning systems
Polyadenylation [Poly(A)] is an essential process during messenger RNA (mRNA) maturation in biological eukaryote systems. Identifying Poly(A) signals (PASs) from the genome level is the key to understanding the mechanism of translation regulation and...

Nm-Nano: a machine learning framework for transcriptome-wide single-molecule mapping of 2´-O-methylation (Nm) sites in nanopore direct RNA sequencing datasets.

RNA biology
2´-O-methylation (Nm) is one of the most abundant modifications found in both mRNAs and noncoding RNAs. It contributes to many biological processes, such as the normal functioning of tRNA, the protection of mRNA against degradation by the decapping a...

Deep Learning for Elucidating Modifications to RNA-Status and Challenges Ahead.

Genes
RNA-binding proteins and chemical modifications to RNA play vital roles in the co- and post-transcriptional regulation of genes. In order to fully decipher their biological roles, it is an essential task to catalogue their precise target locations al...

Machine Learning Strategies in MicroRNA Research: Bridging Genome to Phenome.

Omics : a journal of integrative biology
MicroRNAs (miRNAs) have emerged as a prominent layer of regulation of gene expression. This article offers the salient and current aspects of machine learning (ML) tools and approaches from genome to phenome in miRNA research. First, we underline tha...

Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry.

Nature materials
To unlock the full promise of messenger (mRNA) therapies, expanding the toolkit of lipid nanoparticles is paramount. However, a pivotal component of lipid nanoparticle development that remains a bottleneck is identifying new ionizable lipids. Here we...