AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

RNA, Messenger

Showing 31 to 40 of 219 articles

Clear Filters

DeepIRES: a hybrid deep learning model for accurate identification of internal ribosome entry sites in cellular and viral mRNAs.

Briefings in bioinformatics
The internal ribosome entry site (IRES) is a cis-regulatory element that can initiate translation in a cap-independent manner. It is often related to cellular processes and many diseases. Thus, identifying the IRES is important for understanding its ...

AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery.

Nature communications
Ionizable lipid nanoparticles (LNPs) are seeing widespread use in mRNA delivery, notably in SARS-CoV-2 mRNA vaccines. However, the expansion of mRNA therapies beyond COVID-19 is impeded by the absence of LNPs tailored for diverse cell types. In this ...

An effective deep learning-based approach for splice site identification in gene expression.

Science progress
A crucial stage in eukaryote gene expression involves mRNA splicing by a protein assembly known as the spliceosome. This step significantly contributes to generating and properly operating the ultimate gene product. Since non-coding introns disrupt e...

A personalized mRNA signature for predicting hypertrophic cardiomyopathy applying machine learning methods.

Scientific reports
Hypertrophic cardiomyopathy (HCM) may lead to cardiac dysfunction and sudden death. This study was designed to develop a HCM signature applying bioinformatics and machine learning methods. Data of HCM and normal tissues were obtained from public data...

Benchmarking the negatives: Effect of negative data generation on the classification of miRNA-mRNA interactions.

PLoS computational biology
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally. In animals, this regulation is achieved via base-pairing with partially complementary sequences on mainly 3' UTR region of messenger RNAs (mRNAs). Comp...

Adapting nanopore sequencing basecalling models for modification detection via incremental learning and anomaly detection.

Nature communications
We leverage machine learning approaches to adapt nanopore sequencing basecallers for nucleotide modification detection. We first apply the incremental learning (IL) technique to improve the basecalling of modification-rich sequences, which are usuall...

Current limitations in predicting mRNA translation with deep learning models.

Genome biology
BACKGROUND: The design of nucleotide sequences with defined properties is a long-standing problem in bioengineering. An important application is protein expression, be it in the context of research or the production of mRNA vaccines. The rate of prot...

Deciphering 3'UTR Mediated Gene Regulation Using Interpretable Deep Representation Learning.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
The 3' untranslated regions (3'UTRs) of messenger RNAs contain many important cis-regulatory elements that are under functional and evolutionary constraints. It is hypothesized that these constraints are similar to grammars and syntaxes in human lang...

Advancing mRNA subcellular localization prediction with graph neural network and RNA structure.

Bioinformatics (Oxford, England)
MOTIVATION: The asymmetrical distribution of expressed mRNAs tightly controls the precise synthesis of proteins within human cells. This non-uniform distribution, a cornerstone of developmental biology, plays a pivotal role in numerous cellular proce...

Rational Design of Lipid Nanoparticles for Enhanced mRNA Vaccine Delivery via Machine Learning.

Small (Weinheim an der Bergstrasse, Germany)
Since the coronavirus pandemic, mRNA vaccines have revolutionized the field of vaccinology. Lipid nanoparticles (LNPs) are proposed to enhance mRNA delivery efficiency; however, their design is suboptimal. Here, a rational method for designing LNPs i...