Molecular latent representations, derived from autoencoders (AEs), have been widely used for drug or material discovery over the past couple of years. In particular, a variety of machine learning methods based on latent representations have shown exc...
This study used k-mer embeddings as effective feature to identify DNA N6-Methyladenine sites in plant genomes and obtained improved performance without substantial effort in feature extraction, combination and selection. Identification of DNA N6-meth...
Examining mental health is crucial for preventing mental illnesses such as depression. This study presents a method for classifying electrocardiogram (ECG) data into four emotional states according to the stress levels using one-against-all and naive...
Laboratory investigation; a journal of technical methods and pathology
Nov 24, 2021
Breast fibroepithelial lesions (FEL) are biphasic tumors which consist of benign fibroadenomas (FAs) and the rarer phyllodes tumors (PTs). FAs and PTs have overlapping features, but have different clinical management, which makes correct core biopsy ...
BACKGROUND: Radiomics may provide more objective and accurate predictions for extrahepatic cholangiocarcinoma (ECC). In this study, we developed radiomics models based on magnetic resonance imaging (MRI) and machine learning to preoperatively predict...
Journal of pain and symptom management
Nov 23, 2021
CONTEXT: Hospitalization provides an opportunity to address end-of-life care (EoLC) preferences if patients at risk of death can be accurately identified while in the hospital. The modified Hospital One-Year Mortality Risk (mHOMR) uses demographic an...
An accurate assessment of preoperative risk may improve use of hospital resources and reduce morbidity and mortality in high-risk surgical patients. This study aims at implementing an automated surgical risk calculator based on Artificial Neural Netw...
Postpartum hemorrhage is the leading cause of maternal morbidity. Clinical prediction of postpartum hemorrhage remains challenging, particularly in the case of a vaginal birth. We studied machine learning models to predict postpartum hemorrhage. Wome...
BACKGROUND: Conventional statistics are based on a simple cause-and-effect principle. Postoperative complications, however, have a multifactorial and interrelated etiology. The application of artificial intelligence might be more accurate to predict ...
OBJECTIVE: The aim of this study was to evaluate the feasibility of machine learning approach based on clinical factors and diffusion tensor imaging (DTI) to predict anti-seizure medication (ASM) response in focal epilepsy. We hypothesized that ASM r...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.