IEEE journal of biomedical and health informatics
Mar 7, 2019
OBJECTIVE: The complex nature of Parkinson's disease (PD) makes difficult to rate its severity, mainly based on the visual inspection of motor impairments. Wearable sensors have been demonstrated to help overcoming such a difficulty, by providing obj...
Electroencephalography (EEG) is a powerful, noninvasive tool that provides a high temporal resolution to directly reflect brain activities. Conventional electrodes require skin preparation and the use of conductive gels, while subjects must wear unco...
Determining the signal quality of surface electromyography (sEMG) recordings is time consuming and requires the judgement of trained observers. An automated procedure to evaluate sEMG quality would streamline data processing and reduce time demands. ...
Computational intelligence and neuroscience
Mar 4, 2019
A multiuser detection (MUD) algorithm based on deep learning network is proposed for the satellite mobile communication system. Due to relative motion between the satellite and users, multiple access interference (MUI) introduced by multipath fading ...
IEEE transactions on bio-medical engineering
Feb 26, 2019
SIGNIFICANCE: The performance of traditional approaches to decoding movement intent from electromyograms (EMGs) and other biological signals commonly degrade over time. Furthermore, conventional algorithms for training neural network based decoders m...
OBJECTIVE: Obstructive sleep-disordered breathing (SDB) events, unlike central events, are associated with increased respiratory effort. Esophageal pressure (P ) monitoring is the gold standard for measuring respiratory effort, but it is typically po...
Cardiovascular pathologies cause 23.5% of human deaths, worldwide. An auto-diagnostic system monitoring heart activity, which can identify the early symptoms of cardiac illnesses, might reduce the death rate caused by these problems. Phonocardiograph...
IEEE transactions on bio-medical engineering
Feb 21, 2019
OBJECTIVE: This paper describes how non-invasive wearable sensors can be used in combination with deep learning to classify artificially induced gait alterations without the requirement for a medical professional or gait analyst to be present. This a...
In motor imagery (MI) based brain-computer interface (BCI) signal analysis, mu and beta rhythms of electroencephalograms (EEGs) are widely investigated due to their high temporal resolution and capability to define the different movement-related ment...
IEEE transactions on bio-medical engineering
Feb 18, 2019
The assessment of Parkinson's disease (PD) poses a significant challenge, as it is influenced by various factors that lead to a complex and fluctuating symptom manifestation. Thus, a frequent and objective PD assessment is highly valuable for effecti...