EEG signals exhibit spatio-temporal characteristics due to the neural activity dispersion in space over the brain and the dynamic temporal patterns of electrical activity in neurons. This study tries to effectively utilize the spatio-temporal nature ...
International journal of medical informatics
Jan 30, 2025
BACKGROUND: Cardiac arrest (CA) is the sudden cessation of heart function, typically resulting in loss of consciousness and cessation of pulse and breathing. The electrocardiogram (ECG) stands as an essential tool extensively utilized by clinicians, ...
In recent years, wearable devices such as smartwatches and smart patches have revolutionized biosignal acquisition and analysis, particularly for monitoring electrocardiography (ECG). However, the limited power supply of these devices often precludes...
Physical and engineering sciences in medicine
Jan 27, 2025
Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment ...
The objective of this study is to assess the potential of a transformer-based deep learning approach applied to event-related brain potentials (ERPs) derived from electroencephalographic (EEG) data. Traditional methods involve averaging the EEG signa...
Computer methods and programs in biomedicine
Jan 26, 2025
BACKGROUND AND OBJECTIVES: Reflex syncope (RS) is the most common type of syncope caused by dysregulation of the autonomic nervous system. Diagnosing RS typically involves the head-up tilt test (HUTT), which tracks physiological signals such as blood...
Cardiovascular disease (CVD) is caused by the abnormal functioning of the heart which results in a high mortality rate across the globe. The accurate and early prediction of various CVDs from the electrocardiogram (ECG) is vital for the prevention of...
Human activity recognition (HAR) using radar technology is becoming increasingly valuable for applications in areas such as smart security systems, healthcare monitoring, and interactive computing. This study investigates the integration of convoluti...
Cardiovascular disease (CVD) poses a significant challenge to global health, with cardiac arrhythmia representing one of its most prevalent manifestations. The timely and precise classification of arrhythmias is critical for the effective management ...
This study aimed to develop a real-time, noninvasive hyperkalemia monitoring system for dialysis patients with chronic kidney disease. Hyperkalemia, common in dialysis patients, can lead to life-threatening arrhythmias or sudden death if untreated. T...