AIMC Topic: Signal Processing, Computer-Assisted

Clear Filters Showing 451 to 460 of 1956 articles

A Method to Extract Task-Related EEG Feature Based on Lightweight Convolutional Neural Network.

Neuroscience bulletin
Unlocking task-related EEG spectra is crucial for neuroscience. Traditional convolutional neural networks (CNNs) effectively extract these features but face limitations like overfitting due to small datasets. To address this issue, we propose a light...

Continuous reach-to-grasp motion recognition based on an extreme learning machine algorithm using sEMG signals.

Physical and engineering sciences in medicine
Recognizing user intention in reach-to-grasp motions is a critical challenge in rehabilitation engineering. To address this, a Machine Learning (ML) algorithm based on the Extreme Learning Machine (ELM) was developed for identifying motor actions usi...

mmWave-RM: A Respiration Monitoring and Pattern Classification System Based on mmWave Radar.

Sensors (Basel, Switzerland)
Breathing is one of the body's most basic functions and abnormal breathing can indicate underlying cardiopulmonary problems. Monitoring respiratory abnormalities can help with early detection and reduce the risk of cardiopulmonary diseases. In this s...

Power spectral density-based resting-state EEG classification of first-episode psychosis.

Scientific reports
Historically, the analysis of stimulus-dependent time-frequency patterns has been the cornerstone of most electroencephalography (EEG) studies. The abnormal oscillations in high-frequency waves associated with psychotic disorders during sensory and c...

Certain investigation on hybrid neural network method for classification of ECG signal with the suitable a FIR filter.

Scientific reports
The Electrocardiogram (ECG) records are crucial for predicting heart diseases and evaluating patient's health conditions. ECG signals provide essential peak values that reflect reliable health information. Analyzing ECG signals is a fundamental techn...

A Deep Learning Approach to Estimate Multi-Level Mental Stress From EEG Using Serious Games.

IEEE journal of biomedical and health informatics
Stress is revealed by the inability of individuals to cope with their environment, which is frequently evidenced by a failure to achieve their full potential in tasks or goals. This study aims to assess the feasibility of estimating the level of stre...

HGCTNet: Handcrafted Feature-Guided CNN and Transformer Network for Wearable Cuffless Blood Pressure Measurement.

IEEE journal of biomedical and health informatics
Biosignals collected by wearable devices, such as electrocardiogram and photoplethysmogram, exhibit redundancy and global temporal dependencies, posing a challenge in extracting discriminative features for blood pressure (BP) estimation. To address t...

MASA-TCN: Multi-Anchor Space-Aware Temporal Convolutional Neural Networks for Continuous and Discrete EEG Emotion Recognition.

IEEE journal of biomedical and health informatics
Emotion recognition from electroencephalogram (EEG) signals is a critical domain in biomedical research with applications ranging from mental disorder regulation to human-computer interaction. In this paper, we address two fundamental aspects of EEG ...

A Residual U-Net Neural Network for Seismocardiogram Denoising and Analysis During Physical Activity.

IEEE journal of biomedical and health informatics
Seismocardiogram (SCG) signals are noninvasively obtained cardiomechanical signals containing important features for cardiovascular health monitoring. However, these signals are prone to contamination by motion noise, which can significantly impact a...

Hybrid Brain-Computer Interface Controlled Soft Robotic Glove for Stroke Rehabilitation.

IEEE journal of biomedical and health informatics
Soft robotic glove controlled by a brain-computer interface (BCI) have demonstrated effectiveness in hand rehabilitation for stroke patients. Current systems rely on static visual representations for patients to perform motor imagination (MI) tasks, ...