AIMC Topic: Sleep

Clear Filters Showing 21 to 30 of 285 articles

Subjective recovery in professional soccer players: A machine learning and mediation approach.

Journal of sports sciences
Coaches often ask players to judge their recovery status (subjective recovery). We aimed to explore potential determinants of subjective recovery in 101 male professional soccer players of 4 Italian Serie C teams and to further investigate whether th...

Machine learning model for menstrual cycle phase classification and ovulation day detection based on sleeping heart rate under free-living conditions.

Computers in biology and medicine
The accurate classification of menstrual cycle phases and detection of ovulation is critical for women's health management, particularly in addressing infertility, alleviating premenstrual syndrome, and preventing hormone-related disorders. However, ...

Ultrasound Predicts Drug-Induced Sleep Endoscopy Findings Using Machine Learning Models.

The Laryngoscope
OBJECTIVES: Ultrasound is a promising low-risk imaging modality that can provide objective airway measurements that may circumvent limitations of drug-induced sleep endoscopy (DISE). This study was devised to identify ultrasound-derived anatomical me...

Sleep Posture Detection via Embedded Machine Learning on a Reduced Set of Pressure Sensors.

Sensors (Basel, Switzerland)
Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position...

Performance evaluation of a machine learning-based methodology using dynamical features to detect nonwear intervals in actigraphy data in a free-living setting.

Sleep health
GOAL AND AIMS: One challenge using wearable sensors is nonwear time. Without a nonwear (e.g., capacitive) sensor, actigraphy data quality can be biased by subjective determinations confounding sleep/wake classification. We developed and evaluated a m...

Screening prediction models using artificial intelligence for moderate-to-severe obstructive sleep apnea in patients with acute ischemic stroke.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Obstructive sleep apnea (OSA) is common after stroke. Still, routine screening of OSA with polysomnography (PSG) is often unfeasible in clinical practice, primarily because of how limited resources are and the physical condition of patien...

Detection and location of EEG events using deep learning visual inspection.

PloS one
The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject's health state in relation to ...

Annotated interictal discharges in intracranial EEG sleep data and related machine learning detection scheme.

Scientific data
Interictal epileptiform discharges (IEDs) such as spikes and sharp waves represent pathological electrophysiological activities occurring in epilepsy patients between seizures. IEDs occur preferentially during non-rapid eye movement (NREM) sleep and ...

Domain Adversarial Convolutional Neural Network Improves the Accuracy and Generalizability of Wearable Sleep Assessment Technology.

Sensors (Basel, Switzerland)
Wearable accelerometers are widely used as an ecologically valid and scalable solution for long-term at-home sleep monitoring in both clinical research and care. In this study, we applied a deep learning domain adversarial convolutional neural networ...

Artificial Intelligence Can Drive Sleep Medicine.

Sleep medicine clinics
This article explores the transformative role of artificial intelligence (AI) in sleep medicine, highlighting its applications in detecting sleep microstructure patterns and integrating novel metrics. AI enhances diagnostic accuracy and objectivity, ...