AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Stress, Psychological

Showing 11 to 20 of 133 articles

Clear Filters

How do machine learning models perform in the detection of depression, anxiety, and stress among undergraduate students? A systematic review.

Cadernos de saude publica
Undergraduate students are often impacted by depression, anxiety, and stress. In this context, machine learning may support mental health assessment. Based on the following research question: "How do machine learning models perform in the detection o...

Using natural language processing to identify patterns associated with depression, anxiety, and stress symptoms during the COVID-19 pandemic.

Journal of affective disorders
BACKGROUND: Combining data-driven natural language processing techniques with traditional methods using predefined word lists may offer greater insights into the connections between language patterns and depression and anxiety symptoms, particularly ...

Stress Monitoring in Pandemic Screening: Insights from GSR Sensor and Machine Learning Analysis.

Biosensors
This study investigates the impact of patient stress on COVID-19 screening. An attempt was made to measure the level of anxiety of individuals undertaking rapid tests for SARS-CoV-2. To this end, a galvanic skin response (GSR) sensor that was connect...

Personalized stress optimization intervention to reduce adolescents' anxiety: A randomized controlled trial leveraging machine learning.

Journal of anxiety disorders
Anxiety symptoms are among the most prevalent mental health disorders in adolescents, highlighting the need for scalable and accessible interventions. As anxiety often co-occurs with perceived stress during adolescence, stress interventions may offer...

Stress management with HRV following AI, semantic ontology, genetic algorithm and tree explainer.

Scientific reports
Heart Rate Variability (HRV) serves as a vital marker of stress levels, with lower HRV indicating higher stress. It measures the variation in the time between heartbeats and offers insights into health. Artificial intelligence (AI) research aims to u...

Identifying Preliminary Risk Profiles for Dissociation in 16- to 25-Year-Olds Using Machine Learning.

Early intervention in psychiatry
INTRODUCTION: Dissociation is associated with clinical severity, increased risk of suicide and self-harm, and disproportionately affects adolescents and young adults. Whilst evidence indicates multiple factors contribute to dissociative experiences, ...

Analyzing patterns of frequent mental distress in Alzheimer's patients: A generative AI approach.

Journal of the National Medical Association
This study tackles creating Python code for beginners with generative AI and analyzing trends in mental distress among Alzheimer's patients in the US (2015-2022 CDC data). It guides beginners through using AI to generate code for visualizing these tr...

Applying machine learning to ecological momentary assessment data to identify predictors of loss-of-control eating and overeating severity in adolescents: A preliminary investigation.

Appetite
OBJECTIVE: Several factors (e.g., interpersonal stress, affect) predict loss-of-control (LOC) eating and overeating in adolescents, but most past research has tested predictors separately. We applied machine learning to simultaneously evaluate multip...

Subjective recovery in professional soccer players: A machine learning and mediation approach.

Journal of sports sciences
Coaches often ask players to judge their recovery status (subjective recovery). We aimed to explore potential determinants of subjective recovery in 101 male professional soccer players of 4 Italian Serie C teams and to further investigate whether th...