AIMC Topic: Structure-Activity Relationship

Clear Filters Showing 211 to 220 of 240 articles

Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on the Chemical Structure.

International journal of molecular sciences
Antibody-drug conjugates (ADCs) are promising cancer therapeutics, but optimizing their cytotoxic payloads remains challenging. We present DumplingGNN, a novel hybrid Graph Neural Network architecture for predicting ADC payload activity and toxicity....

Data-Driven Insights into Porphyrin Geometry: Interpretable AI for Non-Planarity and Aromaticity Analyses.

Journal of chemical information and modeling
Porphyrins are involved in numerous and very different chemical and biological processes, due to the sensitivity of their application-relevant properties to subtle structural changes. Applying modern machine learning methodology is very appealing for...

Discovery of hematopoietic progenitor kinase 1 inhibitors using machine learning-based screening and free energy perturbation.

Journal of biomolecular structure & dynamics
Hematopoietic progenitor kinase 1 (HPK1) is a key negative regulator of T-cell receptor (TCR) signaling and a promising target for cancer immunotherapy. The development of novel HPK1 inhibitors is challenging yet promising. In this study, we used a c...

Machine Learning Techniques to Infer Protein Structure and Function from Sequences: A Comprehensive Review.

Methods in molecular biology (Clifton, N.J.)
The elucidation of protein structure and function plays a pivotal role in understanding biological processes and facilitating drug discovery. With the exponential growth of protein sequence data, machine learning techniques have emerged as powerful t...

Fighting COVID-19 with Artificial Intelligence.

Methods in molecular biology (Clifton, N.J.)
The development of vaccines for the treatment of COVID-19 is paving the way for new hope. Despite this, the risk of the virus mutating into a vaccine-resistant variant still persists. As a result, the demand of efficacious drugs to treat COVID-19 is ...

Mol2Context-vec: learning molecular representation from context awareness for drug discovery.

Briefings in bioinformatics
With the rapid development of proteomics and the rapid increase of target molecules for drug action, computer-aided drug design (CADD) has become a basic task in drug discovery. One of the key challenges in CADD is molecular representation. High-qual...

De novo generation of dual-target ligands using adversarial training and reinforcement learning.

Briefings in bioinformatics
Artificial intelligence, such as deep generative methods, represents a promising solution to de novo design of molecules with the desired properties. However, generating new molecules with biological activities toward two specific targets remains an ...

The accurate prediction and characterization of cancerlectin by a combined machine learning and GO analysis.

Briefings in bioinformatics
Cancerlectins, lectins linked to tumor progression, have become the focus of cancer therapy research for their carbohydrate-binding specificity. However, the specific characterization for cancerlectins involved in tumor progression is still unclear. ...

SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction.

Briefings in bioinformatics
A major concern with co-administration of different drugs is the high risk of interference between their mechanisms of action, known as adverse drug-drug interactions (DDIs), which can cause serious injuries to the organism. Although several computat...