AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Time-Lapse Imaging

Showing 61 to 70 of 73 articles

Clear Filters

Automated detection of apoptotic bodies and cells in label-free time-lapse high-throughput video microscopy using deep convolutional neural networks.

Bioinformatics (Oxford, England)
MOTIVATION: Reliable label-free methods are needed for detecting and profiling apoptotic events in time-lapse cell-cell interaction assays. Prior studies relied on fluorescent markers of apoptosis, e.g. Annexin-V, that provide an inconsistent and lat...

A hybrid artificial intelligence model leverages multi-centric clinical data to improve fetal heart rate pregnancy prediction across time-lapse systems.

Human reproduction (Oxford, England)
STUDY QUESTION: Can artificial intelligence (AI) algorithms developed to assist embryologists in evaluating embryo morphokinetics be enriched with multi-centric clinical data to better predict clinical pregnancy outcome?

Prediction of Human Induced Pluripotent Stem Cell Formation Based on Deep Learning Analyses Using Time-lapse Brightfield Microscopy Images.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
We use deep learning methods to predict human induced pluripotent stem cell (hiPSC) formation using time-lapse brightfield microscopy images taken from a cell identified as the beginning of entered into the reprogramming process. A U-net is used to s...

3D time-lapse imaging of a mouse embryo using intensity diffraction tomography embedded inside a deep learning framework.

Applied optics
We present a compact 3D diffractive microscope that can be inserted directly in a cell incubator for long-term observation of developing organisms. Our setup is particularly simple and robust, since it does not include any moving parts and is compati...

Automatic improvement of deep learning-based cell segmentation in time-lapse microscopy by neural architecture search.

Bioinformatics (Oxford, England)
MOTIVATION: Live cell segmentation is a crucial step in biological image analysis and is also a challenging task because time-lapse microscopy cell sequences usually exhibit complex spatial structures and complicated temporal behaviors. In recent yea...

Bound2Learn: a machine learning approach for classification of DNA-bound proteins from single-molecule tracking experiments.

Nucleic acids research
DNA-bound proteins are essential elements for the maintenance, regulation, and use of the genome. The time they spend bound to DNA provides useful information on their stability within protein complexes and insight into the understanding of biologica...

Consistency and objectivity of automated embryo assessments using deep neural networks.

Fertility and sterility
OBJECTIVE: To evaluate the consistency and objectivity of deep neural networks in embryo scoring and making disposition decisions for biopsy and cryopreservation in comparison to grading by highly trained embryologists.