AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Uncertainty

Showing 1 to 10 of 665 articles

Clear Filters

A controlled trial examining large Language model conformity in psychiatric assessment using the Asch paradigm.

BMC psychiatry
BACKGROUND: Despite significant advances in AI-driven medical diagnostics, the integration of large language models (LLMs) into psychiatric practice presents unique challenges. While LLMs demonstrate high accuracy in controlled settings, their perfor...

Weakly supervised nuclei segmentation based on pseudo label correction and uncertainty denoising.

Artificial intelligence in medicine
Nuclei segmentation plays a vital role in computer-aided histopathology image analysis. Numerous fully supervised learning approaches exhibit amazing performance relying on pathological image with precisely annotations. Whereas, it is difficult and t...

A Framework for Parameter Estimation and Uncertainty Quantification in Systems Biology Using Quantile Regression and Physics-Informed Neural Networks.

Bulletin of mathematical biology
A framework for parameter estimation and uncertainty quantification is crucial for understanding the mechanisms of biological interactions within complex systems and exploring their dynamic behaviors beyond what can be experimentally observed. Despit...

Artefacts of Change: The Disruptive Nature of Humanoid Robots Beyond Classificatory Concerns.

Science and engineering ethics
One characteristic of socially disruptive technologies is that they have the potential to cause uncertainty about the application conditions of a concept i.e., they are conceptually disruptive. Humanoid robots have done just this, as evidenced by dis...

Knowledge Uncertainty Estimation for Reliable Clinical Decision Support: A Delirium Risk Prognosis Case Study.

Studies in health technology and informatics
INTRODUCTION: Predictive models hold significant potential in healthcare, but their adoption in clinical settings is hampered by limited trust due to their inability to recognize when presented with unfamiliar data. Estimating knowledge uncertainty (...

Effect of Uncertainty-Aware AI Models on Pharmacists' Reaction Time and Decision-Making in a Web-Based Mock Medication Verification Task: Randomized Controlled Trial.

JMIR medical informatics
BACKGROUND: Artificial intelligence (AI)-based clinical decision support systems are increasingly used in health care. Uncertainty-aware AI presents the model's confidence in its decision alongside its prediction, whereas black-box AI only provides a...

Deep learning-based uncertainty quantification for quality assurance in hepatobiliary imaging-based techniques.

Oncotarget
Recent advances in deep learning models have transformed medical imaging analysis, particularly in radiology. This editorial outlines how uncertainty quantification through embedding-based approaches enhances diagnostic accuracy and reliability in he...

Enhancing brain age estimation under uncertainty: A spectral-normalized neural gaussian process approach utilizing 2.5D slicing.

NeuroImage
Brain age gap, the difference between estimated brain age and chronological age via magnetic resonance imaging, has emerged as a pivotal biomarker in the detection of brain abnormalities. While deep learning is accurate in estimating brain age, the a...

Complex nth power root fuzzy sets: Theory, and applications for multi-attribute decision making in uncertain environments.

PloS one
The newly introduced nth power root fuzzy set is a useful tool for expressing ambiguity and vagueness. It has an improved ability to manage uncertain situations compared to intuitionistic fuzzy set and Pythagorean fuzzy set theories, making nth power...

Patient-specific uncertainty calibration of deep learning-based autosegmentation networks for adaptive MRI-guided lung radiotherapy.

Physics in medicine and biology
Uncertainty assessment of deep learning autosegmentation (DLAS) models can support contour corrections in adaptive radiotherapy (ART), e.g. by utilizing Monte Carlo Dropout (MCD) uncertainty maps. However, poorly calibrated uncertainties at the patie...