AIMC Topic: Visual Fields

Clear Filters Showing 51 to 60 of 118 articles

An Artificial Intelligence Approach to Assess Spatial Patterns of Retinal Nerve Fiber Layer Thickness Maps in Glaucoma.

Translational vision science & technology
PURPOSE: The purpose of this study was to classify the spatial patterns of retinal nerve fiber layer thickness (RNFLT) and assess their associations with visual field (VF) loss in glaucoma.

Prediction of visual field from swept-source optical coherence tomography using deep learning algorithms.

Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
PURPOSE: To develop a deep learning method to predict visual field (VF) from wide-angle swept-source optical coherence tomography (SS-OCT) and compare the performance of three Google Inception architectures.

Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma.

The British journal of ophthalmology
BACKGROUND/AIM: To train and validate the prediction performance of the deep learning (DL) model to predict visual field (VF) in central 10° from spectral domain optical coherence tomography (SD-OCT).

A Modeling Study of the Emergence of Eye Position Gain Fields Modulating the Responses of Visual Neurons in the Brain.

Frontiers in neural circuits
The responses of many cortical neurons to visual stimuli are modulated by the position of the eye. This form of gain modulation by eye position does not change the retinotopic selectivity of the responses, but only changes the amplitude of the respon...

The usefulness of the Deep Learning method of variational autoencoder to reduce measurement noise in glaucomatous visual fields.

Scientific reports
The aim of the study was to investigate the usefulness of processing visual field (VF) using a variational autoencoder (VAE). The training data consisted of 82,433 VFs from 16,836 eyes. Testing dataset 1 consisted of test-retest VFs from 104 eyes wit...

Predicting Glaucoma before Onset Using Deep Learning.

Ophthalmology. Glaucoma
PURPOSE: To assess the accuracy of deep learning models to predict glaucoma development from fundus photographs several years before disease onset.

Artificial Intelligence Mapping of Structure to Function in Glaucoma.

Translational vision science & technology
PURPOSE: To develop an artificial intelligence (AI)-based structure-function (SF) map relating retinal nerve fiber layer (RNFL) damage on spectral domain optical coherence tomography (SDOCT) to functional loss on standard automated perimetry (SAP).

Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier.

The British journal of ophthalmology
BACKGROUND/AIMS: To assess the performance of a deep learning classifier for differentiation of glaucomatous optic neuropathy (GON) from compressive optic neuropathy (CON) based on ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre l...