OBJECTIVES: Respiratory binning of free-breathing magnetic resonance imaging data reduces motion blurring; however, it exacerbates noise and introduces severe artifacts due to undersampling. Deep neural networks can remove artifacts and noise but usu...
OBJECTIVE: Deep learning (DL) reconstruction enables substantial acceleration of image acquisition while maintaining diagnostic image quality. The aims of this study were to overcome the drawback of specific absorption rate (SAR)-related limitations ...
OBJECTIVE: The aim of this study was to evaluate the effect of a deep learning based computer-aided diagnosis (DL-CAD) system on radiologists' interpretation accuracy and efficiency in reading biparametric prostate magnetic resonance imaging scans.
OBJECTIVES: Validation of deep learning models should separately consider bedside chest radiographs (CXRs) as they are the most challenging to interpret, while at the same time the resulting diagnoses are important for managing critically ill patient...
OBJECTIVES: The aim of this study was to investigate the impact of a deep learning-based superresolution reconstruction technique for T1-weighted volume-interpolated breath-hold examination (VIBESR) on image quality in comparison with standard VIBE i...
OBJECTIVES: The aim of this study was to leverage volumetric quantification of airspace disease (AD) derived from a superior modality (computed tomography [CT]) serving as ground truth, projected onto digitally reconstructed radiographs (DRRs) to (1)...
PURPOSE: The aims of this study were to train and evaluate deep learning models for automated segmentation of abdominal organs in whole-body magnetic resonance (MR) images from the UK Biobank (UKBB) and German National Cohort (GNC) MR imaging studies...
MATERIALS AND METHODS: This single-center study was approved by the institutional review board. Artificial intelligence-based FS MRI scans were created from non-FS images using a deep learning system with a modified convolutional neural network-based...
MATERIALS AND METHODS: Five publicly available databases comprising normal CXR, confirmed COVID-19 pneumonia cases, and other pneumonias were used. After the harmonization of the data, the training set included 7966 normal cases, 5451 with other pneu...