PURPOSE: To propose a clinically feasible automatic planning solution for external beam intensity-modulated radiotherapy, including dose prediction via a deep learning and voxel-based optimization strategy.
PURPOSE: To reduce workload and inconsistencies in organ segmentation for radiation treatment planning, we developed and evaluated general and custom autosegmentation models on computed tomography (CT) for three major tumor sites using a well-establi...
PURPOSE: We aimed to develop a noninvasive artificial intelligence (AI) model to diagnose signet-ring cell carcinoma (SRCC) of gastric cancer (GC) and identify patients with SRCC who could benefit from postoperative chemotherapy based on preoperative...
PURPOSE: Typically, the current dose prediction models are limited to small amounts of data and require retraining for a specific site, often leading to suboptimal performance. We propose a site-agnostic, three-dimensional dose distribution predictio...
PURPOSE: Cone-beam computed tomography (CBCT) is frequently used for accurate image-guided radiation therapy. However, the poor CBCT image quality prevents its further clinical use. Thus, it is important to improve the HU accuracy and structure prese...
PURPOSE: For pancreatic cancer patients, image guided radiation therapy and real-time tumor tracking (RTTT) techniques can deliver radiation to the target accurately. Currently, for the radiation therapy machine with kV X-ray imaging systems, interna...
PURPOSE: The purpose of this work was to develop and validate a deep convolutional neural network (CNN) approach for the automated pelvis segmentation in computed tomography (CT) scans to enable the quantification of active pelvic bone marrow by mean...
PURPOSE: Deep learning (DL) is rapidly finding applications in low-dose CT image denoising. While having the potential to improve the image quality (IQ) over the filtered back projection method (FBP) and produce images quickly, performance generaliza...
PURPOSE: Reducing X-ray dose increases safety in cardiac electrophysiology procedures but also increases image noise and artifacts which may affect the discernibility of devices and anatomical cues. Previous denoising methods based on convolutional n...
PURPOSE: Imaging registration has a significant contribution to guide and support physicians in the process of decision-making for diagnosis, prognosis, and treatment. However, existing registration methods based on the convolutional neural network c...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.