Magnetic resonance imaging (MRI) of the brain has benefited from deep learning (DL) to alleviate the burden on radiologists and MR technologists, and improve throughput. The easy accessibility of DL tools has resulted in a rapid increase of DL models...
With the rise of novel 3D magnetic resonance spectroscopy imaging (MRSI) acquisition protocols in clinical practice, which are capable of capturing a large number of spectra from a subject's brain, there is a need for an automated preprocessing pipel...
At present, MRI scans are typically performed inside fully enclosed radiofrequency (RF) shielding rooms, posing stringent installation requirements and causing patient discomfort. We aim to eliminate electromagnetic interference (EMI) for MRI with no...
Chemical exchange saturation transfer (CEST) MRI is a promising molecular imaging technique but suffers from long scan times and complicated processing. CEST was recently combined with magnetic resonance fingerprinting (MRF) to address these shortcom...
The purpose of the current study was to introduce a Deep learning-based Accelerated and Noise-Suppressed Estimation (DANSE) method for reconstructing quantitative maps of biological tissue cellular-specific, R2t*, and hemodynamic-specific, R2', metri...
Increasing the accuracy and reproducibility of subcortical brain segmentation is advantageous in various related clinical applications. In this study, we derived a segmentation method based on a convolutional neural network (i.e., U-Net) and a large-...
The purpose of the current study was to develop a deep learning technique called Golden-angle RAdial Sparse Parallel Network (GRASPnet) for fast reconstruction of dynamic contrast-enhanced 4D MRI acquired with golden-angle radial k-space trajectories...
The purpose of the current study was to develop deep learning-regularized, single-step quantitative susceptibility mapping (QSM) quantification, directly generating QSM from the total phase map. A deep learning-regularized, single-step QSM quantifica...
Self-supervised learning has shown great promise because of its ability to train deep learning (DL) magnetic resonance imaging (MRI) reconstruction methods without fully sampled data. Current self-supervised learning methods for physics-guided recons...
The objective of the current study was to investigate the performance of various deep learning (DL) architectures for MyoMapNet, a DL model for T estimation using accelerated cardiac T mapping from four T -weighted images collected after a single inv...