AI Medical Compendium Journal:
Ophthalmology. Glaucoma

Showing 1 to 10 of 18 articles

Diagnostic Performance of the Offline Medios Artificial Intelligence for Glaucoma Detection in a Rural Tele-Ophthalmology Setting.

Ophthalmology. Glaucoma
PURPOSE: This study assesses the diagnostic efficacy of offline Medios Artificial Intelligence (AI) glaucoma software in a primary eye care setting, using nonmydriatic fundus images from Remidio's Fundus-on-Phone (FOP NM-10). Artificial intelligence ...

Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.

Ophthalmology. Glaucoma
CLINICAL RELEVANCE: Glaucoma is a complex eye condition with varied morphological and clinical presentations, making diagnosis and management challenging. The lack of a consensus definition for glaucoma or glaucomatous optic neuropathy further compli...

Opportunities for Improving Glaucoma Clinical Trials via Deep Learning-Based Identification of Patients with Low Visual Field Variability.

Ophthalmology. Glaucoma
PURPOSE: Develop and evaluate the performance of a deep learning model (DLM) that forecasts eyes with low future visual field (VF) variability, and study the impact of using this DLM on sample size requirements for neuroprotective trials.

Deep Learning Classification of Angle Closure based on Anterior Segment OCT.

Ophthalmology. Glaucoma
PURPOSE: To assess the performance and generalizability of a convolutional neural network (CNN) model for objective and high-throughput identification of primary angle-closure disease (PACD) as well as PACD stage differentiation on anterior segment s...

Deep Learning-Assisted Detection of Glaucoma Progression in Spectral-Domain OCT.

Ophthalmology. Glaucoma
PURPOSE: To develop and validate a deep learning (DL) model for detection of glaucoma progression using spectral-domain (SD)-OCT measurements of retinal nerve fiber layer (RNFL) thickness.

A Deep Learning Approach to Improve Retinal Structural Predictions and Aid Glaucoma Neuroprotective Clinical Trial Design.

Ophthalmology. Glaucoma
PURPOSE: To investigate the efficacy of a deep learning regression method to predict macula ganglion cell-inner plexiform layer (GCIPL) and optic nerve head (ONH) retinal nerve fiber layer (RNFL) thickness for use in glaucoma neuroprotection clinical...

Artificial Intelligence for Glaucoma: Creating and Implementing Artificial Intelligence for Disease Detection and Progression.

Ophthalmology. Glaucoma
On September 3, 2020, the Collaborative Community on Ophthalmic Imaging conducted its first 2-day virtual workshop on the role of artificial intelligence (AI) and related machine learning techniques in the diagnosis and treatment of various ophthalmi...

A Case for the Use of Artificial Intelligence in Glaucoma Assessment.

Ophthalmology. Glaucoma
We hypothesize that artificial intelligence (AI) applied to relevant clinical testing in glaucoma has the potential to enhance the ability to detect glaucoma. This premise was discussed at the recent Collaborative Community on Ophthalmic Imaging meet...

Accurate Identification of the Trabecular Meshwork under Gonioscopic View in Real Time Using Deep Learning.

Ophthalmology. Glaucoma
PURPOSE: Accurate identification of iridocorneal structures on gonioscopy is difficult to master, and errors can lead to grave surgical complications. This study aimed to develop and train convolutional neural networks (CNNs) to accurately identify t...

Fast and Accurate Ophthalmic Medication Bottle Identification Using Deep Learning on a Smartphone Device.

Ophthalmology. Glaucoma
PURPOSE: To assess the accuracy and efficacy of deep learning models, specifically convolutional neural networks (CNNs), to identify glaucoma medication bottles.