AIMC Topic: Algorithms

Clear Filters Showing 581 to 590 of 26978 articles

Entity replacement strategy for temporal knowledge graph query relaxation.

Neural networks : the official journal of the International Neural Network Society
The temporal knowledge graph (TKG) query enables the retrieval of candidate answer lists by addressing questions that involve temporal constraints, regarded as a crucial downstream task in the realm of the temporal knowledge graph. Existing methods p...

Enhancing lung cancer detection through integrated deep learning and transformer models.

Scientific reports
Lung cancer has been stated as one of the prevalent killers of cancer up to this present time and this clearly underlines the rationale for early diagnosis to enhance life expectancy of patients afflicted with the condition. The reasons behind the us...

Domain knowledge-infused pre-trained deep learning models for efficient white blood cell classification.

Scientific reports
White blood cell (WBC) classification is a crucial step in assessing a patient's health and validating medical treatment in the medical domain. Hence, efficient computer vision solutions to the classification of WBC will be an effective aid to medica...

Generative and predictive neural networks for the design of functional RNA molecules.

Nature communications
RNA is a remarkably versatile molecule that has been engineered for applications in therapeutics, diagnostics, and in vivo information-processing systems. However, the complex relationship between the sequence, structure, and function of RNA often ne...

Prediction of high-risk pregnancy based on machine learning algorithms.

Scientific reports
This study explores the application of machine learning algorithms in predicting high-risk pregnancy among expectant mothers, aiming to construct an efficient predictive model to improve maternal health management. The study is based on the maternal ...

Self-supervised learning for MRI reconstruction through mapping resampled k-space data to resampled k-space data.

Magnetic resonance imaging
In recent years, significant advancements have been achieved in applying deep learning (DL) to magnetic resonance imaging (MRI) reconstruction, which traditionally relies on fully sampled data. However, real-world clinical scenarios often demonstrate...

XCAT 3.0: A comprehensive library of personalized digital twins derived from CT scans.

Medical image analysis
Virtual Imaging Trials (VIT) offer a cost-effective and scalable approach for evaluating medical imaging technologies. Computational phantoms, which mimic real patient anatomy and physiology, play a central role in VITs. However, the current librarie...

Delving into transfer learning within U-Net for refined retinal vessel segmentation: An extensive hyperparameter analysis.

Photodiagnosis and photodynamic therapy
Blood vessel segmentation poses numerous challenges. Firstly, blood vessels often lack sufficient contrast against the background, impeding accurate differentiation. Additionally, the overlapping nature of blood vessels complicates separating individ...

A dense multi-pooling convolutional network for driving fatigue detection.

Scientific reports
Driver fatigue is one of the major causes of traffic accidents, particularly for drivers of large vehicles, who are more susceptible to fatigue due to prolonged driving hours and monotonous conditions during their journeys. Existing vision-based driv...