AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Alzheimer Disease

Showing 131 to 140 of 894 articles

Clear Filters

Improving Multiscale Fuzzy Entropy Robustness in EEG-Based Alzheimer's Disease Detection via Amplitude Transformation.

Sensors (Basel, Switzerland)
This study investigates the effectiveness of amplitude transformation in enhancing the performance and robustness of Multiscale Fuzzy Entropy for Alzheimer's disease detection using electroencephalography signals. Multiscale Fuzzy Entropy is a comple...

AlzGenPred - CatBoost-based gene classifier for predicting Alzheimer's disease using high-throughput sequencing data.

Scientific reports
AD is a progressive neurodegenerative disorder characterized by memory loss. Due to the advancement in next-generation sequencing, an enormous amount of AD-associated genomics data is available. However, the information about the involvement of these...

Revolutionizing healthcare: a comparative insight into deep learning's role in medical imaging.

Scientific reports
Recently, Deep Learning (DL) models have shown promising accuracy in analysis of medical images. Alzeheimer Disease (AD), a prevalent form of dementia, uses Magnetic Resonance Imaging (MRI) scans, which is then analysed via DL models. To address the ...

Deep learning analysis of fMRI data for predicting Alzheimer's Disease: A focus on convolutional neural networks and model interpretability.

PloS one
The early detection of Alzheimer's Disease (AD) is thought to be important for effective intervention and management. Here, we explore deep learning methods for the early detection of AD. We consider both genetic risk factors and functional magnetic ...

A Machine learning classification framework using fused fractal property feature vectors for Alzheimer's disease diagnosis.

Brain research
Alzheimer's disease (AD) profoundly affects brain tissue and network structures. Analyzing the topological properties of these networks helps to understand the progression of the disease. Most studies focus on single-scale brain networks, but few add...

Portable, low-field magnetic resonance imaging for evaluation of Alzheimer's disease.

Nature communications
Portable, low-field magnetic resonance imaging (LF-MRI) of the brain may facilitate point-of-care assessment of patients with Alzheimer's disease (AD) in settings where conventional MRI cannot. However, image quality is limited by a lower signal-to-n...

LCGNet: Local Sequential Feature Coupling Global Representation Learning for Functional Connectivity Network Analysis With fMRI.

IEEE transactions on medical imaging
Analysis of functional connectivity networks (FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has greatly advanced our understanding of brain diseases, including Alzheimer's disease (AD) and attention deficit hyperact...

Brain Network Classification for Accurate Detection of Alzheimer's Disease via Manifold Harmonic Discriminant Analysis.

IEEE transactions on neural networks and learning systems
Mounting evidence shows that Alzheimer's disease (AD) manifests the dysfunction of the brain network much earlier before the onset of clinical symptoms, making its early diagnosis possible. Current brain network analyses treat high-dimensional networ...

Use of Artificial Intelligence in Imaging Dementia.

Cells
Alzheimer's disease is the most common cause of dementia in the elderly population (aged 65 years and over), followed by vascular dementia, Lewy body dementia, and rare types of neurodegenerative diseases, including frontotemporal dementia. There is ...

BPEN: Brain Posterior Evidential Network for trustworthy brain imaging analysis.

Neural networks : the official journal of the International Neural Network Society
The application of deep learning techniques to analyze brain functional magnetic resonance imaging (fMRI) data has led to significant advancements in identifying prospective biomarkers associated with various clinical phenotypes and neurological cond...