Antimicrobial peptides (AMPs) are excellent at fighting many different infections. This demonstrates how important it is to make new AMPs that are even better at eliminating infections. The fundamental transformation in a variety of scientific discip...
Bioactive peptides, as small protein fragments, are essential mediators of diverse physiological activities, such as antimicrobial, anti-inflammatory, anticancer, antioxidant, and immunomodulatory functions. Despite their substantial potential in pha...
The journal of physical chemistry letters
39661947
Antimicrobial peptides (AMPs) hold significant potential as broad-spectrum therapeutics due to their ability to target a variety of different pathogens, including bacteria, fungi, and viruses. However, the rational design of these peptides requires t...
Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptide...
Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose ...
Journal of chemical information and modeling
39792442
Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has beco...
Small proteins (≤100 amino acids) play important roles across all life forms, ranging from unicellular bacteria to higher organisms. In this study, we have developed SProtFP which is a machine learning-based method for functional annotation of prokar...
Antimicrobial peptides (AMPs) are promising candidates to combat multidrug-resistant pathogens. However, the high cost of extensive wet-lab screening has made AI methods for identifying and designing AMPs increasingly important, with machine learning...
Antimicrobial peptides (AMPs) have important developmental prospects as potential candidates for novel antibiotics. Although many studies have been devoted to the identification of AMPs and the qualitative prediction of their functional activities, f...
Artificial intelligence holds great promise for the design of antimicrobial peptides (AMPs); however, current models face limitations in generating AMPs with sufficient novelty and diversity, and they are rarely applied to the generation of antifunga...