The objectives were to evaluate the presence of vancomycin-resistant enterococci with acquired (VRE-a) and intrinsic (VRE-i) resistance mechanisms in fecal samples from different wild animals, and analyze their phenotypes and genotypes of antimicrobi...
Journal of chemical information and modeling
30802402
Predicting the activity of new chemical compounds over pathogenic microorganisms with different metabolic reaction networks (MRN ) is an important goal due to the different susceptibility to antibiotics. The ChEMBL database contains >160 000 outcomes...
With antimicrobial resistance (AMR) rapidly evolving in pathogens, quick and accurate identification of genetic determinants of phenotypic resistance is essential for improving surveillance, stewardship, and clinical mitigation. Machine learning (ML)...
The ESKAPE family, comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp., poses a significant global threat due to their heightened virulence and extensiv...
Antimicrobial susceptibility testing (AST) plays a critical role in assessing the resistance of individual microbial isolates and determining appropriate antimicrobial therapeutics in a timely manner. However, conventional AST normally takes up to 72...
Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi
39638747
BACKGROUND: Rapid and accurate identification of bacteria is required in order to develop effective treatment strategies. Traditional culture-based methods are time-consuming, while MALDI-TOF MS is expensive. The Raman spectroscopy, due to its relati...
Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptide...