AIMC Topic: Auditory Perception

Clear Filters Showing 11 to 20 of 74 articles

Bridging auditory perception and natural language processing with semantically informed deep neural networks.

Scientific reports
Sound recognition is effortless for humans but poses a significant challenge for artificial hearing systems. Deep neural networks (DNNs), especially convolutional neural networks (CNNs), have recently surpassed traditional machine learning in sound c...

A developmental model of audio-visual attention (MAVA) for bimodal language learning in infants and robots.

Scientific reports
A social individual needs to effectively manage the amount of complex information in his or her environment relative to his or her own purpose to obtain relevant information. This paper presents a neural architecture aiming to reproduce attention mec...

Machine Learning Recognizes Frequency-Following Responses in American Adults: Effects of Reference Spectrogram and Stimulus Token.

Perceptual and motor skills
Electrophysiological research has been widely utilized to study brain responses to acoustic stimuli. The frequency-following response (FFR), a non-invasive reflection of how the brain encodes acoustic stimuli, is a particularly propitious electrophys...

Subject-independent auditory spatial attention detection based on brain topology modeling and feature distribution alignment.

Hearing research
Auditory spatial attention detection (ASAD) seeks to determine which speaker in a surround sound field a listener is focusing on based on the one's brain biosignals. Although existing studies have achieved ASAD from a single-trial electroencephalogra...

Convolutional neural networks can identify brain interactions involved in decoding spatial auditory attention.

PLoS computational biology
Human listeners have the ability to direct their attention to a single speaker in a multi-talker environment. The neural correlates of selective attention can be decoded from a single trial of electroencephalography (EEG) data. In this study, leverag...

DGSD: Dynamical graph self-distillation for EEG-based auditory spatial attention detection.

Neural networks : the official journal of the International Neural Network Society
Auditory Attention Detection (AAD) aims to detect the target speaker from brain signals in a multi-speaker environment. Although EEG-based AAD methods have shown promising results in recent years, current approaches primarily rely on traditional conv...

Sensory Attenuation With a Virtual Robotic Arm Controlled Using Facial Movements.

IEEE transactions on visualization and computer graphics
When humans generate stimuli voluntarily, they perceive the stimuli more weakly than those produced by others, which is called sensory attenuation (SA). SA has been investigated in various body parts, but it is unclear whether an extended body induce...

Spectro-temporal acoustical markers differentiate speech from song across cultures.

Nature communications
Humans produce two forms of cognitively complex vocalizations: speech and song. It is debated whether these differ based primarily on culturally specific, learned features, or if acoustical features can reliably distinguish them. We study the spectro...

Deep learning-based auditory attention decoding in listeners with hearing impairment.

Journal of neural engineering
This study develops a deep learning (DL) method for fast auditory attention decoding (AAD) using electroencephalography (EEG) from listeners with hearing impairment (HI). It addresses three classification tasks: differentiating noise from speech-in-n...

SSTE: Syllable-Specific Temporal Encoding to FORCE-learn audio sequences with an associative memory approach.

Neural networks : the official journal of the International Neural Network Society
The circuitry and pathways in the brains of humans and other species have long inspired researchers and system designers to develop accurate and efficient systems capable of solving real-world problems and responding in real-time. We propose the Syll...