Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monito...
In the context of China's ongoing industrial revolution and technological transformation, there is a growing demand for advanced energy management solutions and the increasing role of artificial intelligence in various industries. This paper aims to ...
Magnetic resonance electrical properties tomography can extract the electrical properties of in-vivo tissue. To estimate tissue electrical properties, various reconstruction algorithms have been proposed. However, physics-based reconstructions are pr...
Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of these data complicates analysis of spatial gene expression patterns. We address this issue by deriving a to...
. Machine learning has enhanced the performance of decoding signals indicating human behaviour. Electroencephalography (EEG) brainwave decoding, as an exemplar indicating neural activity and human thoughts non-invasively, has been helpful in neural a...
Computed tomography (CT) scans play a key role in the diagnosis of stroke, a leading cause of morbidity and mortality worldwide. However, interpreting these scans is often challenging, necessitating automated solutions for timely and accurate diagnos...
Electroencephalography microstates (EEG-MS) show promise to be a neurobiological biomarker in stroke. Thus, the aim of the study was to identify biomarkers to discriminate stroke patients from healthy individuals based on EEG-MS and clinical features...
Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Rece...
Hierarchical generative models can produce data samples based on the statistical structure of their training distribution. This capability can be linked to current theories in computational neuroscience, which propose that spontaneous brain activity ...
Humans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental que...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.