AIMC Topic: Cadmium

Clear Filters Showing 21 to 30 of 63 articles

Machine learning and structural equation modeling for revealing the influence factors and pathways of different water management regimes acting on brown rice cadmium.

The Science of the total environment
Excessive cadmium (Cd) in brown rice has detrimental effects on rice growth and human health. Water management is a cost-effective, eco-friendly measure to suppress Cd accumulation in rice. However, there is no acknowledged water management regime th...

Machine learning phenotyping and GWAS reveal genetic basis of Cd tolerance and absorption in jute.

Environmental pollution (Barking, Essex : 1987)
Cadmium (Cd) is a dangerous environmental contaminant. Jute (Corchorus sp.) is an important natural fiber crop with strong absorption and excellent adaptability to metal-stressed environments, used in the phytoextraction of heavy metals. Understandin...

Predicting Cd accumulation in crops and identifying nonlinear effects of multiple environmental factors based on machine learning models.

The Science of the total environment
The traditional prediction of the Cd content in grains (Cd) of crops primarily relies on the multiple linear regression models based on soil Cd content (Cd) and pH, neglecting inter-factorial interactions and nonlinear causal links between external e...

Machine learning-based prediction of cadmium pollution in topsoil and identification of critical driving factors in a mining area.

Environmental geochemistry and health
Mining activities have resulted in a substantial accumulation of cadmium (Cd) in agricultural soils, particularly in southern China. Long-term Cd exposure can cause plant growth inhibition and various diseases. Rapid identification of the extent of s...

Rapid assessment of heavy metal accumulation capability of Sedum alfredii using hyperspectral imaging and deep learning.

Ecotoxicology and environmental safety
Hyperaccumulators are the material basis and key to the phytoremediation of heavy metal contaminated soils. Conventional methods for screening hyperaccumulators are highly dependent on the time- and labor-consuming sampling and chemical analysis. In ...

Optimal biochar selection for cadmium pollution remediation in Chinese agricultural soils via optimized machine learning.

Journal of hazardous materials
Biochar is effective in mitigating heavy metal pollution, and cadmium (Cd) is the primary pollutant in agricultural fields. However, traditional trial-and-error methods for determining the optimal biochar remediation efficiency are time-consuming and...

A machine learning model predicts stroke associated with blood cadmium level.

Scientific reports
Stroke is the leading cause of death and disability worldwide. Cadmium is a prevalent environmental toxicant that may contribute to cardiovascular disease, including stroke. We aimed to build an effective and interpretable machine learning (ML) model...

Predicting Cd(II) adsorption capacity of biochar materials using typical machine learning models for effective remediation of aquatic environments.

The Science of the total environment
The screening and design of "green" biochar materials with high adsorption capacity play a pivotal role in promoting the sustainable treatment of Cd(II)-containing wastewater. In this study, six typical machine learning (ML) models, namely Linear Reg...

Leveraging machine learning to unravel the impact of cadmium stress on goji berry micropropagation.

PloS one
This study investigates the influence of cadmium (Cd) stress on the micropropagation of Goji Berry (Lycium barbarum L.) across three distinct genotypes (ERU, NQ1, NQ7), employing an array of machine learning (ML) algorithms, including Multilayer Perc...

Applying machine learning to construct an association model for lung cancer and environmental hormone high-risk factors and nursing assessment reconstruction.

Journal of nursing scholarship : an official publication of Sigma Theta Tau International Honor Society of Nursing
INTRODUCTION: To utilize machine learning techniques to develop an association model linking lung cancer and environmental hormones to enhance the understanding of potential lung cancer risk factors and refine current nursing assessments for lung can...