AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Nutrition Surveys

Showing 1 to 10 of 162 articles

Clear Filters

Explosion of formulaic research articles, including inappropriate study designs and false discoveries, based on the NHANES US national health database.

PLoS biology
With the growth of artificial intelligence (AI)-ready datasets such as the National Health and Nutrition Examination Survey (NHANES), new opportunities for data-driven research are being created, but also generating risks of data exploitation by pape...

More science friction for less science fiction.

PLoS biology
AI-ready health datasets can be exploited to generate many research articles with potentially limited scientific value. A study in PLOS Biology highlights this problem, by describing a recent, sudden explosion in papers analyzing the NHANES health da...

Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.

Frontiers in public health
BACKGROUND: Exposure to heavy metals has been implicated in adverse auditory health outcomes, yet the precise relationships between heavy metal biomarkers and hearing status remain underexplored. This study leverages a machine learning framework to i...

Machine learning model for age related macular degeneration based on pesticides: the National Health and Nutrition Examination Survey 2007-2008.

Frontiers in public health
Age-related macular degeneration (AMD) is the most common cause of irreversible deterioration of vision in older adults. Previous studies have found that exposure to pesticides can lead to a worsening of AMD. In this paper, information on pesticide e...

The Association of Elevated Depression Levels and Life's Essential 8 on Cardiovascular Health With Predicted Machine Learning Models and Interpretations: Evidence From NHANES 2007-2018.

Depression and anxiety
The association between depression severity and cardiovascular health (CVH) represented by Life's Essential 8 (LE8) was analyzed, with a novel focus on ranked levels and different ages. Machine learning (ML) algorithms were also selected aimed at pr...

Development and validation of machine learning models for predicting low muscle mass in patients with obesity and diabetes.

Lipids in health and disease
BACKGROUND AND AIMS: Low muscle mass (LMM) is a critical complication in patients with obesity and diabetes, exacerbating metabolic and cardiovascular risks. Novel obesity indices, such as the body roundness index (BRI), conicity index, and relative ...

Constructing machine learning-based risk prediction model for osteoarthritis in population aged 45 and above: NHANES 2011-2018.

Scientific reports
Osteoarthritis is a widespread chronic joint disease, becoming increasingly prevalent, particularly among individuals over the age of 45. This condition causes joint pain and dysfunction, significantly disrupting daily life. The objective of this stu...

Exploring the Impact of PA and Sedentary Behavior on Gout Risk in Hyperuricemia: Insights From Machine Learning and SHAP Analysis.

International journal of rheumatic diseases
BACKGROUND: Individuals with hyperuricemia (HUA) are widely recognized as being at increased risk for gout. This study aimed to investigate how physical activity (PA) duration and sedentary duration impact gout risk in individuals with HUA and to dev...

Machine learning for predicting all-cause mortality of metabolic dysfunction-associated fatty liver disease: a longitudinal study based on NHANES.

BMC gastroenterology
BACKGROUND: The mortality burden of metabolic dysfunction-associated fatty liver disease (MAFLD) is rising, making it crucial to predict mortality and identify the factors influencing it. While advanced machine learning algorithms are gaining recogni...

Deep learning health space model for ordered responses.

BMC medical informatics and decision making
BACKGROUND: As personalized medicine becomes more prevalent, the objective measurement and visualization of an individual's health status are becoming increasingly crucial. However, as the dimensions of data collected from each individual increase, t...