AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Cerebral Angiography

Showing 1 to 10 of 65 articles

Clear Filters

Knowledge-Augmented Deep Learning for Segmenting and Detecting Cerebral Aneurysms With CT Angiography: A Multicenter Study.

Radiology
Background Deep learning (DL) could improve the labor-intensive, challenging processes of diagnosing cerebral aneurysms but requires large multicenter data sets. Purpose To construct a DL model using a multicenter data set for accurate cerebral aneur...

Predicting Intracranial Aneurysm Rupture: A Multifactor Analysis Combining Radscore, Morphology, and PHASES Parameters.

Academic radiology
RATIONALE AND OBJECTIVES: We aimed at developing and validating a nomogram and machine learning (ML) models based on radiomics score (Radscore), morphology, and PHASES to predict intracranial aneurysm (IA) rupture.

Evaluation of multiple deep neural networks for detection of intracranial dural arteriovenous fistula on susceptibility weighted angiography imaging.

The neuroradiology journal
BACKGROUND: The natural history of intracranial dural arteriovenous fistula (DAVF) is variable and early diagnosis is crucial in order to positively impact the clinical course of aggressive DAVF. Artificial intelligence (AI) based techniques can be p...

Research on predicting radiographic exposure time in imaging based on neural network prediction models.

Clinical neurology and neurosurgery
OBJECTIVE: To explore the anatomical and clinical factors that affect the radiographic exposure time in radial artery cerebral angiography and to establish a model.

Evaluating a clinically available artificial intelligence model for intracranial aneurysm detection: a multi-reader study and algorithmic audit.

Neuroradiology
PURPOSE: We aimed to validate a clinically available artificial intelligence (AI) model to assist general radiologists in the detection of intracranial aneurysm (IA) in a multi-reader multi-case (MRMC) study, and to explore its performance in routine...

Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography.

Radiology. Artificial intelligence
Purpose To develop a deep learning model for the morphologic measurement of unruptured intracranial aneurysms (UIAs) based on CT angiography (CTA) data and validate its performance using a multicenter dataset. Materials and Methods In this retrospect...

Unsupervised Domain Adaptation for Cross-Modality Cerebrovascular Segmentation.

IEEE journal of biomedical and health informatics
Cerebrovascular segmentation from time-of-flight magnetic resonance angiography (TOF-MRA) and computed tomography angiography (CTA) is essential in providing supportive information for diagnosing and treatment planning of multiple intracranial vascul...

Real world clinical experience of using Brainomix e-CTA software in a medium size acute National Health Service Trust.

The British journal of radiology
OBJECTIVES: Artificial intelligence (AI) software including Brainomix "e-CTA" which detect large vessel occlusions (LVO) have clinical potential. We hypothesized that in real world use where prevalence is low, its clinical utility may be overstated.