AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiographic Image Enhancement

Showing 1 to 10 of 99 articles

Clear Filters

Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures.

Japanese journal of radiology
PURPOSE: To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hy...

Deep Learning for Contrast Enhanced Mammography - A Systematic Review.

Academic radiology
BACKGROUND/AIM: Contrast-enhanced mammography (CEM) is a relatively novel imaging technique that enables both anatomical and functional breast imaging, with improved diagnostic performance compared to standard 2D mammography. The aim of this study is...

Adaptive enhancement of shoulder x-ray images using tissue attenuation and type-II fuzzy sets.

PloS one
Shoulder X-ray images typically have low contrast and high noise levels, making it challenging to distinguish and identify subtle anatomical structures. While existing image enhancement techniques are effective in improving contrast, they often overl...

Feature-targeted deep learning framework for pulmonary tumorous Cone-beam CT (CBCT) enhancement with multi-task customized perceptual loss and feature-guided CycleGAN.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Thoracic Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy (IGRT) to provide updated patient anatomy information for lung cancer treatments. However, CBCT images often suffer from streaking artifacts an...

Automatic Vertical Root Fracture Detection on Intraoral Periapical Radiographs With Artificial Intelligence-Based Image Enhancement.

Dental traumatology : official publication of International Association for Dental Traumatology
BACKGROUND/AIM: To explore transfer learning (TL) techniques for enhancing vertical root fracture (VRF) diagnosis accuracy and to assess the impact of artificial intelligence (AI) on image enhancement for VRF detection on both extracted teeth images ...

A Radiomic-Clinical Model of Contrast-Enhanced Mammography for Breast Cancer Biopsy Outcome Prediction.

Academic radiology
RATIONALE AND OBJECTIVES: In the USA over 1 million breast biopsies are performed annually. Approximately 9.6% diagnostic exams were given Breast Imaging Reporting and Data System (BI-RADS) ≥4A, most of which are 4A/4B. Contrast-enhanced mammography ...

Application of a Deep Learning-Based Contrast-Boosting Algorithm to Low-Dose Computed Tomography Pulmonary Angiography With Reduced Iodine Load.

Journal of computer assisted tomography
OBJECTIVE: The aim of this study was to assess the effectiveness of a deep learning-based image contrast-boosting algorithm by enhancing the image quality of low-dose computed tomography pulmonary angiography at reduced iodine load.

An artificial intelligence model for predicting an appropriate mAs with target exposure indicator for chest digital radiography.

Scientific reports
In digital radiography, image quality is synergistically affected by anatomy-specific examinations, exposure factors, body parameters, detector types, and vendors/systems. However, estimating appropriate exposure factors before radiography with optim...