PURPOSE: The purpose of this study was to analyze the choroidal sublayer morphologic features in emmetropic and myopic children using an automatic segmentation model, and to explore the relationship between choroidal sublayers and spherical equivalen...
PURPOSE: The purpose of this study was to develop a deep learning model for automatic binarization of the choroidal tissue, separating choroidal blood vessels from nonvascular stromal tissue, in optical coherence tomography (OCT) images from healthy ...
PURPOSE: To report a rapid and accurate method based upon deep learning for automatic segmentation and measurement of the choroidal thickness (CT) in myopic eyes, and to determine the relationship between refractive error (RE) and CT.
PURPOSE: To differentiate polypoidal choroidal vasculopathy (PCV) from choroidal neovascularization (CNV) and to determine the extent of PCV from fluorescein angiography (FA) using attention-based deep learning networks.
PROPOSE: The proposed deep learning model with a mask region-based convolutional neural network (Mask R-CNN) can predict choroidal thickness automatically. Changes in choroidal thickness with age can be detected with manual measurements. In this stud...
. The choroid is the most vascularized structure in the human eye, whose layer structure and vessel distribution are both critical for the physiology of the retina, and disease pathogenesis of the eye. Although some works have used graph-based method...
Automatic segmentation and measurement of the choroid layer is useful in studying of related fundus diseases, such as diabetic retinopathy and high myopia. However, most algorithms are not helpful for choroid layer segmentation due to its blurred bou...