AI Medical Compendium Topic:
Computed Tomography Angiography

Clear Filters Showing 351 to 360 of 411 articles

Deep Learning-based Quantitative CT Myocardial Perfusion Imaging and Risk Stratification of Coronary Artery Disease.

Radiology
Background Precise assessment of myocardial ischemia burden and cardiovascular risk stratification based on dynamic CT myocardial perfusion imaging (MPI) is lacking. Purpose To develop and validate a deep learning (DL) model for automated quantificat...

Real world clinical experience of using Brainomix e-CTA software in a medium size acute National Health Service Trust.

The British journal of radiology
OBJECTIVES: Artificial intelligence (AI) software including Brainomix "e-CTA" which detect large vessel occlusions (LVO) have clinical potential. We hypothesized that in real world use where prevalence is low, its clinical utility may be overstated.

Automated proximal coronary artery calcium identification using artificial intelligence: advancing cardiovascular risk assessment.

European heart journal. Cardiovascular Imaging
AIMS: Identification of proximal coronary artery calcium (CAC) may improve prediction of major adverse cardiac events (MACE) beyond the CAC score, particularly in patients with low CAC burden. We investigated whether the proximal CAC can be detected ...

A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease.

Radiology
Background Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purp...

Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography.

Radiology. Artificial intelligence
Purpose To develop a deep learning model for the morphologic measurement of unruptured intracranial aneurysms (UIAs) based on CT angiography (CTA) data and validate its performance using a multicenter dataset. Materials and Methods In this retrospect...

[Coronary artery segmentation based on Transformer and convolutional neural networks dual parallel branch encoder neural network].

Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
Manual segmentation of coronary arteries in computed tomography angiography (CTA) images is inefficient, and existing deep learning segmentation models often exhibit low accuracy on coronary artery images. Inspired by the Transformer architecture, th...

Advancements in Cardiac CT Imaging: The Era of Artificial Intelligence.

Echocardiography (Mount Kisco, N.Y.)
In the last decade, artificial intelligence (AI) has influenced the field of cardiac computed tomography (CT), with its scope further enhanced by advanced methodologies such as machine learning (ML) and deep learning (DL). The AI-driven techniques le...

Diagnostic Performance of AI-enabled Plaque Quantification from Coronary CT Angiography Compared with Intravascular Ultrasound.

Radiology. Cardiothoracic imaging
Purpose To assess the diagnostic performance of a coronary CT angiography (CCTA) artificial intelligence (AI)-enabled tool (AI-QCPA; HeartFlow) to quantify plaque volume, as compared with intravascular US (IVUS). Materials and Methods A retrospective...

[Investigation of the impact of the deep learning based CT fractional flow reserve on clinical decision-making and long-term prognosis in patients with obstructive coronary heart disease].

Zhonghua xin xue guan bing za zhi
To investigate the impact of the deep-learning-based CT fractional flow reserve (CT-FFR) on clinical decision-making and long-term prognosis in patients with obstructive coronary heart disease. In this single-center retrospective cohort study, cons...

Letter to Editor Regarding "Use of Artificial Intelligence Software to Detect Intracranial Aneurysms: A Comprehensive Stroke Center Experience".

World neurosurgery
Artificial intelligence (AI) is increasingly significant in neurosurgery, enhancing differential diagnosis, preoperative evaluation, and surgical precision. A recent study in World Neurosurgery evaluated AI's role in aneurysm detection, comparing con...