AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Computer Graphics

Showing 71 to 80 of 207 articles

Clear Filters

Ligand-Based Virtual Screening Based on the Graph Edit Distance.

International journal of molecular sciences
Chemical compounds can be represented as attributed graphs. An attributed graph is a mathematical model of an object composed of two types of representations: nodes and edges. Nodes are individual components, and edges are relations between these com...

Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain.

Scientific reports
Automatic pattern recognition using deep learning techniques has become increasingly important. Unfortunately, due to limited system memory, general preprocessing methods for high-resolution images in the spatial domain can lose important data inform...

XENet: Using a new graph convolution to accelerate the timeline for protein design on quantum computers.

PLoS computational biology
Graph representations are traditionally used to represent protein structures in sequence design protocols in which the protein backbone conformation is known. This infrequently extends to machine learning projects: existing graph convolution algorith...

Literature Mining and Mechanistic Graphical Modelling to Improve mRNA Vaccine Platforms.

Frontiers in immunology
RNA vaccines represent a milestone in the history of vaccinology. They provide several advantages over more traditional approaches to vaccine development, showing strong immunogenicity and an overall favorable safety profile. While preclinical testin...

Compressing deep graph convolution network with multi-staged knowledge distillation.

PloS one
Given a trained deep graph convolution network (GCN), how can we effectively compress it into a compact network without significant loss of accuracy? Compressing a trained deep GCN into a compact GCN is of great importance for implementing the model ...

Toward a Coronavirus Knowledge Graph.

Genes
This study builds a coronavirus knowledge graph (KG) by merging two information sources. The first source is Analytical Graph (AG), which integrates more than 20 different public datasets related to drug discovery. The second source is CORD-19, a col...

Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences.

The journal of physical chemistry. A
Computational approaches for predicting drug-target interactions (DTIs) play an important role in drug discovery since conventional screening experiments are time-consuming and expensive. In this study, we proposed end-to-end representation learning ...

FixationNet: Forecasting Eye Fixations in Task-Oriented Virtual Environments.

IEEE transactions on visualization and computer graphics
Human visual attention in immersive virtual reality (VR) is key for many important applications, such as content design, gaze-contingent rendering, or gaze-based interaction. However, prior works typically focused on free-viewing conditions that have...

Knowledge graphs and their applications in drug discovery.

Expert opinion on drug discovery
INTRODUCTION: Knowledge graphs have proven to be promising systems of information storage and retrieval. Due to the recent explosion of heterogeneous multimodal data sources generated in the biomedical domain, and an industry shift toward a systems b...

KG2Vec: A node2vec-based vectorization model for knowledge graph.

PloS one
Since the word2vec model was proposed, many researchers have vectorized the data in the research field based on it. In the field of social network, the Node2Vec model improved on the basis of word2vec can vectorize nodes and edges in social networks,...