AIMC Topic: Diabetic Retinopathy

Clear Filters Showing 21 to 30 of 456 articles

Predicting diabetic retinopathy based on routine laboratory tests by machine learning algorithms.

European journal of medical research
OBJECTIVES: This study aimed to identify risk factors for diabetic retinopathy (DR) and develop machine learning (ML)-based predictive models using routine laboratory data in patients with type 2 diabetes mellitus (T2DM).

Deep learning-based optical coherence tomography and retinal images for detection of diabetic retinopathy: a systematic and meta analysis.

Frontiers in endocrinology
OBJECTIVE: To systematically review and meta-analyze the effectiveness of deep learning algorithms applied to optical coherence tomography (OCT) and retinal images for the detection of diabetic retinopathy (DR).

Performance and limitation of machine learning algorithms for diabetic retinopathy screening and its application in health management: a meta-analysis.

Biomedical engineering online
BACKGROUND: In recent years, artificial intelligence and machine learning algorithms have been used more extensively to diagnose diabetic retinopathy and other diseases. Still, the effectiveness of these methods has not been thoroughly investigated. ...

A multi model deep net with an explainable AI based framework for diabetic retinopathy segmentation and classification.

Scientific reports
Diabetic Retinopathy (DR) is a serious condition affecting diabetes people caused by hemorrhage in the light-sensitive retinal area. DR sufferers should receive urgent therapy to avoid vision loss. The intelligent medical diagnosis system for DR is e...

D-GET: Group-Enhanced Transformer for Diabetic Retinopathy Severity Classification in Fundus Fluorescein Angiography.

Journal of medical systems
Early detection of Diabetic Retinopathy (DR) is vital for preserving vision and preventing deterioration of eyesight. Fundus Fluorescein Angiography (FFA), recognized as the gold standard for diagnosing DR, effectively reveals abnormalities in retina...

Investigation and validation of genes associated with endoplasmic reticulum stress in diabetic retinopathy using various machine learning algorithms.

Experimental eye research
BACKGROUND: Diabetic retinopathy (DR) is a common complication of diabetes, with Endoplasmic reticulum stress (ERS) playing a key role in cellular adaptation, injury, or apoptosis, impacting disease pathology. This study aimed to identify early diagn...

Performance of a Deep Learning Diabetic Retinopathy Algorithm in India.

JAMA network open
IMPORTANCE: While prospective studies have investigated the accuracy of artificial intelligence (AI) for detection of diabetic retinopathy (DR) and diabetic macular edema (DME), to date, little published data exist on the clinical performance of thes...

Enhancing Ophthalmic Diagnosis and Treatment with Artificial Intelligence.

Medicina (Kaunas, Lithuania)
The integration of artificial intelligence (AI) in ophthalmology is transforming the field, offering new opportunities to enhance diagnostic accuracy, personalize treatment plans, and improve service delivery. This review provides a comprehensive ove...

MSTNet: Multi-scale spatial-aware transformer with multi-instance learning for diabetic retinopathy classification.

Medical image analysis
Diabetic retinopathy (DR), the leading cause of vision loss among diabetic adults worldwide, underscores the importance of early detection and timely treatment using fundus images to prevent vision loss. However, existing deep learning methods strugg...

Development and validation of predictive models for diabetic retinopathy using machine learning.

PloS one
OBJECTIVE: This study aimed to develop and compare machine learning models for predicting diabetic retinopathy (DR) using clinical and biochemical data, specifically logistic regression, random forest, XGBoost, and neural networks.