AIMC Topic: Drug Discovery

Clear Filters Showing 1181 to 1190 of 1567 articles

MLViS: A Web Tool for Machine Learning-Based Virtual Screening in Early-Phase of Drug Discovery and Development.

PloS one
Virtual screening is an important step in early-phase of drug discovery process. Since there are thousands of compounds, this step should be both fast and effective in order to distinguish drug-like and nondrug-like molecules. Statistical machine lea...

Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins.

BMC bioinformatics
BACKGROUND: Molecular docking is a widely-employed method in structure-based drug design. An essential component of molecular docking programs is a scoring function (SF) that can be used to identify the most stable binding pose of a ligand, when boun...

In silico prediction of anti-malarial hit molecules based on machine learning methods.

International journal of computational biology and drug design
Machine learning techniques have been widely used in drug discovery and development in the areas of cheminformatics. Aspartyl aminopeptidase (M18AAP) of Plasmodium falciparum is crucial for survival of malaria parasite. We have created predictive mod...

Machine learning assisted design of highly active peptides for drug discovery.

PLoS computational biology
The discovery of peptides possessing high biological activity is very challenging due to the enormous diversity for which only a minority have the desired properties. To lower cost and reduce the time to obtain promising peptides, machine learning ap...

Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.

Computational biology and chemistry
Protein-protein interactions (PPIs) play essential roles in many biological processes. In protein-protein interaction networks, hubs involve in numbers of PPIs and may constitute an important source of drug targets. The intrinsic disorder proteins (I...

Systematic artifacts in support vector regression-based compound potency prediction revealed by statistical and activity landscape analysis.

PloS one
Support vector machines are a popular machine learning method for many classification tasks in biology and chemistry. In addition, the support vector regression (SVR) variant is widely used for numerical property predictions. In chemoinformatics and ...

A new modeling approach for quantifying expert opinion in the drug discovery process.

Statistics in medicine
Expert opinion plays an important role when choosing clusters of chemical compounds for further investigation. Often, the process by which the clusters are assigned to the experts for evaluation, the so-called selection process, and the qualitative r...

Deep neural nets as a method for quantitative structure-activity relationships.

Journal of chemical information and modeling
Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more r...

Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity.

Bioorganic & medicinal chemistry
A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this r...