AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Drug Interactions

Showing 121 to 130 of 266 articles

Clear Filters

Convolutional neural networks (CNNs): concepts and applications in pharmacogenomics.

Molecular diversity
Convolutional neural networks (CNNs) have been used to extract information from various datasets of different dimensions. This approach has led to accurate interpretations in several subfields of biological research, like pharmacogenomics, addressing...

An Ensemble Learning-Based Method for Inferring Drug-Target Interactions Combining Protein Sequences and Drug Fingerprints.

BioMed research international
Identifying the interactions of the drug-target is central to the cognate areas including drug discovery and drug reposition. Although the high-throughput biotechnologies have made tremendous progress, the indispensable clinical trials remain to be e...

Application of network link prediction in drug discovery.

BMC bioinformatics
BACKGROUND: Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the f...

Automatically classifying the evidence type of drug-drug interaction research papers as a step toward computer supported evidence curation.

AMIA ... Annual Symposium proceedings. AMIA Symposium
A longstanding issue with knowledge bases that discuss drug-drug interactions (DDIs) is that they are inconsistent with one another. Computerized support might help experts be more objective in assessing DDI evidence. A requirement for such systems i...

Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects.

Nature communications
We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through...

Predicting adverse drug reactions of two-drug combinations using structural and transcriptomic drug representations to train an artificial neural network.

Chemical biology & drug design
Adverse drug reactions (ADRs) are pharmacological events triggered by drug interactions with various sources of origin including drug-drug interactions. While there are many computational studies that explore models to predict ADRs originating from s...

Medical Information Extraction in the Age of Deep Learning.

Yearbook of medical informatics
OBJECTIVES: We survey recent developments in medical Information Extraction (IE) as reported in the literature from the past three years. Our focus is on the fundamental methodological paradigm shift from standard Machine Learning (ML) techniques to ...

BIOINTMED: integrated biomedical knowledge base with ontologies and clinical trials.

Medical & biological engineering & computing
Biomedical data are complex and heterogeneous. An ample reliable quantity of data is important for understanding and exploring the domain. The work aims to integrate biomedical data from various heterogeneous sources like dictionaries or corpus and a...

GCN-BMP: Investigating graph representation learning for DDI prediction task.

Methods (San Diego, Calif.)
One drug's pharmacological activity may be changed unexpectedly, owing to the concurrent administration of another drug. It is likely to cause unexpected drug-drug interactions (DDIs). Several machine learning approaches have been proposed to predict...

Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.

Methods (San Diego, Calif.)
Drug-drug interactions (DDIs) are crucial for public health and patient safety, which has aroused widespread concern in academia and industry. The existing computational DDI prediction methods are mainly divided into four categories: literature extra...