AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Drug-Related Side Effects and Adverse Reactions

Showing 51 to 60 of 305 articles

Clear Filters

BERT-based language model for accurate drug adverse event extraction from social media: implementation, evaluation, and contributions to pharmacovigilance practices.

Frontiers in public health
INTRODUCTION: Social media platforms serve as a valuable resource for users to share health-related information, aiding in the monitoring of adverse events linked to medications and treatments in drug safety surveillance. However, extracting drug-rel...

Identification and Characterization of Immune Checkpoint Inhibitor-Induced Toxicities From Electronic Health Records Using Natural Language Processing.

JCO clinical cancer informatics
PURPOSE: Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, yet their use is associated with immune-related adverse events (irAEs). Estimating the prevalence and patient impact of these irAEs in the real-world data setting is c...

BiMPADR: A Deep Learning Framework for Predicting Adverse Drug Reactions in New Drugs.

Molecules (Basel, Switzerland)
Detecting the unintended adverse reactions of drugs (ADRs) is a crucial concern in pharmacological research. The experimental validation of drug-ADR associations often entails expensive and time-consuming investigations. Thus, a computational model t...

Validation of a novel Artificial Pharmacology Intelligence (API) system for the management of patients with polypharmacy.

Research in social & administrative pharmacy : RSAP
OBJECTIVE: Medication management of patients with polypharmacy is highly complex. We aimed to validate a novel Artificial Pharmacology Intelligence (API) algorithm to optimize the medication review process in a comprehensive, personalized, and scalab...

Novel opportunities for clinical pharmacy research: development of a machine learning model to identify medication related causes of delirium in different patient groups.

International journal of clinical pharmacy
The advent of artificial intelligence (AI) technologies has taken the world of science by storm in 2023. The opportunities of this easy to access technology for clinical pharmacy research are yet to be fully understood. The development of a custom-ma...

A Pilot, Predictive Surveillance Model in Pharmacovigilance Using Machine Learning Approaches.

Advances in therapy
INTRODUCTION: The identification of a new adverse event (AE) caused by a drug product is one of the key activities in the pharmaceutical industry to ensure the safety profile of a drug product. Machine learning (ML) has the potential to assist with s...

A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity.

Methods (San Diego, Calif.)
Ensuring the safety and efficacy of chemical compounds is crucial in small-molecule drug development. In the later stages of drug development, toxic compounds pose a significant challenge, losing valuable resources and time. Early and accurate predic...

Learning with an evolving medicine label: how artificial intelligence-based medication recommendation systems must adapt to changing medication labels.

Expert opinion on drug safety
INTRODUCTION: Artificial intelligence or machine learning (AI/ML) based systems can help personalize prescribing decisions for individual patients. The recommendations of these clinical decision support systems must relate to the "label" of the medic...

Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction.

Nucleic acids research
Evaluating pharmacokinetic properties of small molecules is considered a key feature in most drug development and high-throughput screening processes. Generally, pharmacokinetics, which represent the fate of drugs in the human body, are described fro...