AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Delirium

Showing 1 to 10 of 61 articles

Clear Filters

A correlational study of plasma galectin-3 as a potential predictive marker of postoperative delirium in patients with acute aortic dissection.

Scientific reports
This study aimed to demonstrate whether plasma galectin-3 could predict the development of postoperative delirium (POD) in patients with acute aortic dissection (AAD). Prospective, observational study. Cardiac surgery intensive care unit. Consecutive...

Evaluating the Chinese versions of delirium assessment scales: a diagnostic systematic review.

BMC psychiatry
BACKGROUND: The purpose of this study is to examine the validity, reliability and methodological quality of delirium scales that have been translated and adapted in China using quality assessment tools.

Machine learning approach for the prediction of 30-day mortality in patients with sepsis-associated delirium.

PloS one
This study aimed to develop models for predicting the 30-day mortality of sepsis-associated delirium (SAD) by multiple machine learning (ML) algorithms. On the whole, a cohort of 3,197 SAD patients were collected from the Medical Information Mart for...

Enhanced machine learning predictive modeling for delirium in elderly ICU patients with COPD and respiratory failure: A retrospective study based on MIMIC-IV.

PloS one
BACKGROUND AND OBJECTIVE: Elderly patients with Chronic obstructive pulmonary disease (COPD) and respiratory failure admitted to the intensive care unit (ICU) have a poor prognosis, and the occurrence of delirium further worsens outcomes and increase...

Development and usability evaluation of a nurse-led clinical decision support system (AI-AntiDelirium) for management of intensive care unit delirium: A mixed methods study.

Applied nursing research : ANR
BACKGROUND: Clinical decision support systems (CDSS) have been identified to aid clinical decision-making, but few studies focus on the application of CDSS in intensive care unit (ICU) delirium, and particularly usability testing is not employed. We ...

Comparison of machine learning and logistic regression models for predicting emergence delirium in elderly patients: A prospective study.

International journal of medical informatics
OBJECTIVE: To compare the performance of machine learning and logistic regression algorithms in predicting emergence delirium (ED) in elderly patients.

Knowledge Uncertainty Estimation for Reliable Clinical Decision Support: A Delirium Risk Prognosis Case Study.

Studies in health technology and informatics
INTRODUCTION: Predictive models hold significant potential in healthcare, but their adoption in clinical settings is hampered by limited trust due to their inability to recognize when presented with unfamiliar data. Estimating knowledge uncertainty (...

Interpretable machine learning model for predicting delirium in patients with sepsis: a study based on the MIMIC data.

BMC infectious diseases
OBJECTIVE: The aim of this study was to construct interpretable machine learning models to predict the risk of developing delirium in patients with sepsis and to explore the impact of delirium on the 28-day survival rate of patients.

Development and Validation of a Machine Learning Model for Early Prediction of Delirium in Intensive Care Units Using Continuous Physiological Data: Retrospective Study.

Journal of medical Internet research
BACKGROUND: Delirium in intensive care unit (ICU) patients poses a significant challenge, affecting patient outcomes and health care efficiency. Developing an accurate, real-time prediction model for delirium represents an advancement in critical car...

Machine Learning Multimodal Model for Delirium Risk Stratification.

JAMA network open
IMPORTANCE: Automating the identification of risk for developing hospital delirium with models that use machine learning (ML) could facilitate more rapid prevention, identification, and treatment of delirium. However, there are very few reports on th...