AIMC Topic: Electroencephalography

Clear Filters Showing 151 to 160 of 2115 articles

Latent alignment in deep learning models for EEG decoding.

Journal of neural engineering
. Brain-computer interfaces (BCIs) face a significant challenge due to variability in electroencephalography (EEG) signals across individuals. While recent approaches have focused on standardizing input signal distributions, we propose that aligning ...

Enhancing detection of SSVEPs using discriminant compacted network.

Journal of neural engineering
. Steady-state visual evoked potential-based brain-computer interfaces (SSVEP-BCIs) have gained significant attention due to their simplicity, high signal to noise ratio and high information transfer rates (ITRs). Currently, accurate detection is a c...

Depth-sensor-based shared control assistance for mobility and object manipulation: toward long-term home-use of BCI-controlled assistive robotic devices.

Journal of neural engineering
Assistive robots can be developed to restore or provide more autonomy for individuals with motor impairments. In particular, power wheelchairs can compensate lower-limb impairments, while robotic manipulators can compensate upper-limbs impairments. R...

A combination of deep learning models and type-2 fuzzy for EEG motor imagery classification through spatiotemporal-frequency features.

Journal of medical engineering & technology
Developing a robust and effective technique is crucial for interpreting a user's brainwave signals accurately in the realm of biomedical signal processing. The variability and uncertainty present in EEG patterns over time, compounded by noise, pose n...

A Multimodal Deep Learning Approach to Intraoperative Nociception Monitoring: Integrating Electroencephalogram, Photoplethysmography, and Electrocardiogram.

Sensors (Basel, Switzerland)
Monitoring nociception under general anesthesia remains challenging due to the complexity of pain pathways and the limitations of single-parameter methods. In this study, we introduce a multimodal approach that integrates electroencephalogram (EEG), ...

Few-shot transfer learning for individualized braking intent detection on neuromorphic hardware.

Journal of neural engineering
This work explores use of a few-shot transfer learning method to train and implement a convolutional spiking neural network (CSNN) on a BrainChip Akida AKD1000 neuromorphic system-on-chip for developing individual-level, instead of traditionally used...

BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor.

IEEE transactions on biomedical circuits and systems
Personalized brain implants have the potential to revolutionize the treatment of neurological disorders and augment cognition. Medical implants that deliver therapeutic stimulation in response to detected seizures have already been deployed for the t...

Low-Power and Low-Cost AI Processor With Distributed-Aggregated Classification Architecture for Wearable Epilepsy Seizure Detection.

IEEE transactions on biomedical circuits and systems
Wearable devices with continuous monitoring capabilities are critical for the daily detection of epileptic seizures, as they provide users with accurate and comprehensible analytical results. However, current AI classifiers rely on a two-stage recogn...

RVDLAHA: An RISC-V DLA Hardware Architecture for On-Device Real-Time Seizure Detection and Personalization in Wearable Applications.

IEEE transactions on biomedical circuits and systems
Epilepsy is a globally distributed chronic neurological disorder that may pose a threat to life without warning. Therefore, the use of wearable devices for real-time detection and treatment of epilepsy is crucial. Additionally, personalizing disease ...

PhysioEx: a new Python library for explainable sleep staging through deep learning.

Physiological measurement
Sleep staging is a crucial task in clinical and research contexts for diagnosing and understanding sleep disorders. This work introduces PhysioEx (Physiological Signal Explainer), a Python library designed to support the analysis of sleep stages usin...