AIMC Topic: Frail Elderly

Clear Filters Showing 1 to 10 of 39 articles

AI-driven scientometric analysis with recency insights: lower urinary tract symptoms in older and frail populations.

World journal of urology
PURPOSE: This artificial intelligence (AI)-driven scientometric analysis, conducted using the Mynd discovery platform, explores research trends in lower urinary tract symptoms (LUTS) among older patients. By applying its novel recency metric, the stu...

Development of an interpretable machine learning model for frailty risk prediction in older adult care institutions: a mixed-methods, cross-sectional study in China.

BMJ open
OBJECTIVE: To develop and validate an interpretable machine learning (ML)-based frailty risk prediction model that combines real-time health data with validated scale assessments for enhanced decision-making and targeted health management in integrat...

The predictive role of identifying frailty in assessing the need for palliative care in the elderly: the application of machine learning algorithm.

Journal of health, population, and nutrition
BACKGROUND: Palliative care is a key component of integrated care to improve care quality and reduce hospitalization costs for patients with chronic obstructive pulmonary disease (COPD). This study aims to use machine learning algorithms to create an...

Frailty identification using a sensor-based upper-extremity function test: a deep learning approach.

Scientific reports
The global increase in the older adult population highlights the need for effective frailty assessment, a condition linked to adverse health outcomes such as hospitalization and mortality. Existing frailty assessment tools, like the Fried phenotype a...

Machine Learning Models for Frailty Classification of Older Adults in Northern Thailand: Model Development and Validation Study.

JMIR aging
BACKGROUND: Frailty is defined as a clinical state of increased vulnerability due to the age-associated decline of an individual's physical function resulting in increased morbidity and mortality when exposed to acute stressors. Early identification ...

Risk prediction models for frailty in older adults: A systematic review and critical appraisal.

International journal of nursing studies
BACKGROUND: Frailty can lead to increased adverse health outcomes in older adults. Risk prediction models for frailty have benefits in guiding the prevention. Studies have increasingly focused on the development of risk prediction models for frailty ...

Development and Validation of a Machine Learning Method Using Vocal Biomarkers for Identifying Frailty in Community-Dwelling Older Adults: Cross-Sectional Study.

JMIR medical informatics
BACKGROUND: The two most commonly used methods to identify frailty are the frailty phenotype and the frailty index. However, both methods have limitations in clinical application. In addition, methods for measuring frailty have not yet been standardi...

Predicting admission for fall-related injuries in older adults using artificial intelligence: A proof-of-concept study.

Geriatrics & gerontology international
AIM: Pre-injury frailty has been investigated as a tool to predict outcomes of older trauma patients. Using artificial intelligence principles of machine learning, we aimed to identify a "signature" (combination of clinical variables) that could pred...

Predicting grip strength-related frailty in middle-aged and older Chinese adults using interpretable machine learning models: a prospective cohort study.

Frontiers in public health
INTRODUCTION: Frailty is an emerging global health burden, and there is no consensus on the precise prediction of frailty. We aimed to explore the association between grip strength and frailty and interpret the optimal machine learning (ML) model usi...

Predicting frailty in older patients with chronic pain using explainable machine learning: A cross-sectional study.

Geriatric nursing (New York, N.Y.)
Frailty is common among older adults with chronic pain, and early identification is crucial in preventing adverse outcomes like falls, disability, and dementia. However, effective tools for identifying frailty in this population remain limited. This ...