AIMC Topic: Frailty

Clear Filters Showing 1 to 10 of 57 articles

The value of radiomics features of white matter hyperintensities in diagnosing cognitive frailty: a study based on T2-FLAIR imaging.

BMC medical imaging
BACKGROUND: White matter hyperintensities (WMHs) are closely associated with cognitive frailty (CF). This study aims to explore the potential diagnostic value of WMHs for CF based on radiomics approaches, thereby providing a novel methodology for the...

Splenic and portal venous flow associated with frailty and sarcopenia in older outpatients with cardiovascular disease.

BMC geriatrics
BACKGROUND: Older patients with cardiovascular disease often experience frailty and sarcopenia. We evaluated whether a reduced blood flow in the splenic and portal vein is associated with frailty and sarcopenia in older patients with cardiovascular d...

The predictive role of identifying frailty in assessing the need for palliative care in the elderly: the application of machine learning algorithm.

Journal of health, population, and nutrition
BACKGROUND: Palliative care is a key component of integrated care to improve care quality and reduce hospitalization costs for patients with chronic obstructive pulmonary disease (COPD). This study aims to use machine learning algorithms to create an...

Explainable machine learning framework for biomarker discovery by combining biological age and frailty prediction.

Scientific reports
Biological age (BA) and frailty represent two distinct health measures that offer valuable insights into the aging process. Comparing and analyzing blood-based biomarkers from the machine learning (ML) predictors of BA and frailty helps deepen our un...

Frailty identification using a sensor-based upper-extremity function test: a deep learning approach.

Scientific reports
The global increase in the older adult population highlights the need for effective frailty assessment, a condition linked to adverse health outcomes such as hospitalization and mortality. Existing frailty assessment tools, like the Fried phenotype a...

Machine Learning Models for Frailty Classification of Older Adults in Northern Thailand: Model Development and Validation Study.

JMIR aging
BACKGROUND: Frailty is defined as a clinical state of increased vulnerability due to the age-associated decline of an individual's physical function resulting in increased morbidity and mortality when exposed to acute stressors. Early identification ...

Risk prediction models for frailty in older adults: A systematic review and critical appraisal.

International journal of nursing studies
BACKGROUND: Frailty can lead to increased adverse health outcomes in older adults. Risk prediction models for frailty have benefits in guiding the prevention. Studies have increasingly focused on the development of risk prediction models for frailty ...

Perioperative risk assessment for emergency general surgery in those with multimorbidity or frailty.

Current opinion in critical care
PURPOSE OF REVIEW: This review explores advances in risk stratification tools and their applicability in identifying and managing high-risk emergency general surgery (EGS) patients.

Addressing Missing Data Challenges in Geriatric Health Monitoring: A Study of Statistical and Machine Learning Imputation Methods.

Sensors (Basel, Switzerland)
In geriatric healthcare, missing data pose significant challenges, especially in systems used for frailty monitoring in elderly individuals. This study explores advanced imputation techniques used to enhance data quality and maintain model performanc...

A machine learning-based model for predicting the risk of cognitive frailty in elderly patients on maintenance hemodialysis.

Scientific reports
Elderly patients undergoing maintenance hemodialysis (MHD) face a heightened risk of cognitive frailty (CF), which significantly compromises quality of life. Early identification of at-risk individuals and timely intervention are essential. Neverthel...