AIMC Topic: Frontotemporal Dementia

Clear Filters Showing 1 to 10 of 27 articles

EEG-based neurodegenerative disease diagnosis: comparative analysis of conventional methods and deep learning models.

Scientific reports
In the context of lifestyle changes, stress and other environmental factors have resulted in the sudden hike in dementia globally. This necessitates investigations with respect to every horizon of the due cause for it; further on, the diagnosis and t...

Deep learning-based classification of dementia using image representation of subcortical signals.

BMC medical informatics and decision making
BACKGROUND: Dementia is a neurological syndrome marked by cognitive decline. Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns. Early and accurate diagnosis of dementi...

Improving ALS detection and cognitive impairment stratification with attention-enhanced deep learning models.

Scientific reports
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease marked by motor deterioration and cognitive decline. Early diagnosis is challenging due to the complexity of sporadic ALS and the lack of a defined risk population. In this study, we...

EEGConvNeXt: A novel convolutional neural network model for automated detection of Alzheimer's Disease and Frontotemporal Dementia using EEG signals.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Deep learning models have gained widespread adoption in healthcare for accurate diagnosis through the analysis of brain signals. Neurodegenerative disorders like Alzheimer's Disease (AD) and Frontotemporal Dementia (FD) are ...

Integrating neuroscience and artificial intelligence: EEG analysis using ensemble learning for diagnosis Alzheimer's disease and frontotemporal dementia.

Journal of neuroscience methods
BACKGROUND: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are both progressive neurological disorders that affect the elderly. Distinguishing between individuals suffering from these two diseases in the early stages can be quite challeng...

Artificial Intelligence-Assisted Comparative Analysis of the Overlapping Molecular Pathophysiology of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia.

International journal of molecular sciences
The overlapping molecular pathophysiology of Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD) was analyzed using relationships from a knowledge graph of 33+ million biomedical journal articles. The unsu...

Time-Frequency functional connectivity alterations in Alzheimer's disease and frontotemporal dementia: An EEG analysis using machine learning.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
OBJECTIVE: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are prevalent neurodegenerative diseases characterized by altered brain functional connectivity (FC), affecting over 100 million people worldwide. This study aims to identify disti...

Analysis of convolutional neural networks for fronto-temporal dementia biomarker discovery.

International journal of computer assisted radiology and surgery
PURPOSE: Frontotemporal lobe dementia (FTD) results from the degeneration of the frontal and temporal lobes. It can manifest in several different ways, leading to the definition of variants characterised by their distinctive symptomatologies. As thes...

Detecting Alzheimer's Disease Stages and Frontotemporal Dementia in Time Courses of Resting-State fMRI Data Using a Machine Learning Approach.

Journal of imaging informatics in medicine
Early, accurate diagnosis of neurodegenerative dementia subtypes such as Alzheimer's disease (AD) and frontotemporal dementia (FTD) is crucial for the effectiveness of their treatments. However, distinguishing these conditions becomes challenging whe...

Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples.

EBioMedicine
BACKGROUND: Dementia's diagnostic protocols are mostly based on standardised neuroimaging data collected in the Global North from homogeneous samples. In other non-stereotypical samples (participants with diverse admixture, genetics, demographics, MR...