Microbial communities frequently communicate via quorum sensing (QS), where cells produce, secrete, and respond to a threshold level of an autoinducer (AI) molecule, thereby modulating gene expression. However, the biology of QS remains incompletely ...
Journal of bioinformatics and computational biology
Jun 13, 2017
Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the mo...
Gene Ontology (GO) classification of statistically significantly differentially expressed genes is commonly used to interpret transcriptomics data as a part of functional genomic analysis. In this approach, all significantly expressed genes contribut...
Recombinant protein overexpression, an important biotechnological process, is ruled by complex biological rules which are mostly unknown, is in need of an intelligent algorithm so as to avoid resource-intensive lab-based trial and error experiments i...
Small regulatory RNAs (sRNAs) are widespread in bacteria. However, characterizing the targets of sRNA regulation in a way that scales with the increasing number of identified sRNAs has proven challenging. Computational methods offer one means for eff...
Invertible promoters (invertons) are crucial regulatory elements in bacteria, facilitating gene expression changes under stress. Despite their importance, their prevalence and the range of regulated gene functions are largely unknown. We introduced D...
Transcriptomic data is accumulating rapidly; thus, scalable methods for extracting knowledge from this data are critical. Here, we assembled a top-down expression and regulation knowledge base for Escherichia coli. The expression component is a 1035-...
Independent component analysis (ICA) of bacterial transcriptomes has emerged as a powerful tool for obtaining co-regulated, independently-modulated gene sets (iModulons), inferring their activities across a range of conditions, and enabling their ass...
Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low predicti...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.