OBJECTIVE: Although there are methods to identify regions of interest (ROIs) from echocardiographic images of myocardial tissue, they are often time-consuming and difficult to create when image quality is poor. Further, while myocardial strain from u...
To provide accurate predictions, current machine learning-based solutions require large, manually labeled training datasets. We implement persistent homology (PH), a topological tool for studying the pattern of data, to analyze echocardiography-based...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Apr 16, 2024
Cardiovascular MRI (CMRI) is a non-invasive imaging technique adopted for assessing the blood circulatory system's structure and function. Precise image segmentation is required to measure cardiac parameters and diagnose abnormalities through CMRI da...
3D motion estimation from cine cardiac magnetic resonance (CMR) images is important for the assessment of cardiac function and the diagnosis of cardiovascular diseases. Current state-of-the art methods focus on estimating dense pixel-/voxel-wise moti...
Journal of the Royal Society, Interface
Mar 20, 2024
In the human cardiovascular system (CVS), the interaction between the left and right ventricles of the heart is influenced by the septum and the pericardium. Computational models of the CVS can capture this interaction, but this often involves approx...
OBJECTIVES: To investigate the usefulness of machine learning (ML) models using pretreatment F-FDG-PET-based radiomic features for predicting adverse clinical events (ACEs) in patients with cardiac sarcoidosis (CS).
The crucial pathophysiological and prognostic roles of the right ventricle in various diseases have been well-established. Nonetheless, conventional cardiovascular imaging modalities are frequently associated with intrinsic limitations when evaluatin...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.