BACKGROUND AND OBJECTIVE: Diabetic Retinopathy (DR) is a serious diabetes complication that can cause blindness if not diagnosed in its early stages. Manual diagnosis by ophthalmologists is labor-intensive and time-consuming, particularly in overburd...
Integrating 3D magnetic resonance imaging (MRI) with machine learning has shown promising results in healthcare, especially in detecting Alzheimer's Disease (AD). However, changes in MRI technologies and acquisition protocols often yield limited data...
The problem at hand is the significant global health challenge posed by children's diseases, where timely and accurate diagnosis is crucial for effective treatment and management. Conventional diagnosis techniques are typical, use tedious processes a...
Data scarcity in medical images makes transfer learning a common approach in computer-aided diagnosis. Some disease classification tasks can rely on large homogeneous public datasets to train the transferred model, while others cannot, i.e., endoscop...
Medical Visual Question Answering aims to assist doctors in decision-making when answering clinical questions regarding radiology images. Nevertheless, current models learn cross-modal representations through residing vision and text encoders in dual...
Accurate automatic polyp segmentation in colonoscopy is crucial for the prompt prevention of colorectal cancer. However, the heterogeneous nature of polyps and differences in lighting and visibility conditions present significant challenges in achiev...
Deep multiple instance learning (MIL) pipelines are the mainstream weakly supervised learning methodologies for whole slide image (WSI) classification. However, it remains unclear how these widely used approaches compare to each other, given the rece...
Adenocarcinoma, the most prevalent type of colorectal cancer, makes up roughly 95 % of all cases and is associated with a notably high mortality rate. Owing to the various risk factors which might include personal choices and habits or genetic factor...
BACKGROUND: Conventional hip joint MRI scans necessitate lengthy scan durations, posing challenges for patient comfort and clinical efficiency. Previously, accelerated imaging techniques were constrained by a trade-off between noise and resolution. L...
OBJECTIVE: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness...