AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Lumbar Vertebrae

Showing 51 to 60 of 286 articles

Clear Filters

Automatic segmentation of dura for quantitative analysis of lumbar stenosis: A deep learning study with 518 CT myelograms.

Journal of applied clinical medical physics
BACKGROUND: The diagnosis of lumbar spinal stenosis (LSS) can be challenging because radicular pain is not often present in the culprit-level localization. Accurate segmentation and quantitative analysis of the lumbar dura on radiographic images are ...

Predicting Osteoporosis and Osteopenia by Fusing Deep Transfer Learning Features and Classical Radiomics Features Based on Single-Source Dual-energy CT Imaging.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a predictive model for osteoporosis and osteopenia prediction by fusing deep transfer learning (DTL) features and classical radiomics features based on single-source dual-energy computed tomography (C...

Deep Learning Model for Grading and Localization of Lumbar Disc Herniation on Magnetic Resonance Imaging.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Methods for grading and localization of lumbar disc herniation (LDH) on MRI are complex, time-consuming, and subjective. Utilizing deep learning (DL) models as assistance would mitigate such complexities.

Predicting osteoporosis from kidney-ureter-bladder radiographs utilizing deep convolutional neural networks.

Bone
Osteoporosis is a common condition that can lead to fractures, mobility issues, and death. Although dual-energy X-ray absorptiometry (DXA) is the gold standard for osteoporosis, it is expensive and not widely available. In contrast, kidney-ureter-bla...

The Classification of Lumbar Spondylolisthesis X-Ray Images Using Convolutional Neural Networks.

Journal of imaging informatics in medicine
We aimed to develop and validate a deep convolutional neural network (DCNN) model capable of accurately identifying spondylolysis or spondylolisthesis on lateral or dynamic X-ray images. A total of 2449 lumbar lateral and dynamic X-ray images were co...

Two-Stage Deep Learning Model for Diagnosis of Lumbar Spondylolisthesis Based on Lateral X-Ray Images.

World neurosurgery
BACKGROUND: Diagnosing early lumbar spondylolisthesis is challenging for many doctors because of the lack of obvious symptoms. Using deep learning (DL) models to improve the accuracy of X-ray diagnoses can effectively reduce missed and misdiagnoses i...

Mo-fi-disc scoring system: Towards understanding the radiological tools to better delineate the disease process and enhancing our solutions for low back pain in artificial intelligence era.

Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association
BACKGROUND: 'Mo-fi-disc' is a new scoring system that quantifies degeneration of the lumbar spine and predicts the intensity of low back pain (LBP). However, its association with LBP-related disability is unknown. In the present study, we aimed to an...

Machine learning-based automated scan prescription of lumbar spine MRI acquisitions.

Magnetic resonance imaging
PURPOSE: High quality scan prescription that optimally covers the area of interest with scan planes aligned to relevant anatomical structures is crucial for error-free radiologic interpretation. The goal of this project was to develop a machine learn...

Analysis of guide wire displacement in robot-assisted spinal pedicle screw implantation.

Journal of robotic surgery
Robot-assisted pedicle screw placement is prone to guide wire migration, and the related influencing factors have not yet been discussed. Therefore, this study aimed to investigate and analyze the causes of robot-assisted spinal pedicle guide wire di...

Development and validation of an artificial intelligence model to accurately predict spinopelvic parameters.

Journal of neurosurgery. Spine
OBJECTIVE: Achieving appropriate spinopelvic alignment has been shown to be associated with improved clinical symptoms. However, measurement of spinopelvic radiographic parameters is time-intensive and interobserver reliability is a concern. Automate...